Proof of Theorem 5.1.3

Proof. [Proof of Theorem 5.1.3] By [BCDT01] $ E$ is modular, so there is a rational newform $ f \in S_2^{{\mathrm{new}}}(pN)$ which is an eigenform for the Hecke operators and an isogeny $ E \to E_f$ defined over  $ \mathbb{Q}$ , which by Hypothesis 4 can be chosen to have degree coprime to $ \ell$ . Indeed, every cyclic rational isogeny is a composition of rational isogenies of prime degree, and $ E$ admits no rational $ \ell$ -isogeny since $ \overline{\rho}_{E,\ell}$ is irreducible.

By Hypothesis 1 the Tamagawa numbers of $ E$ are coprime to $ \ell$ . Since $ E$ and $ E_f$ are related by an isogeny of degree coprime to $ \ell$ , the Tamagawa numbers of $ E_f$ are also not divisible by $ \ell$ by Lemma 5.2.6. Moreover, note that

$\displaystyle E(\mathbb{Q})\otimes \mathbb{F}_\ell \cong E_f(\mathbb{Q}) \otimes \mathbb{F}_\ell.$

Let $ \mathfrak{m}$ be the ideal of $ \mathbb{T}(pN)$ generated by $ \ell$ and $ T_n-a_n(E)$ for all integers $ n$ coprime to $ p$ . Note that $ \mathfrak{m}$ is maximal by Lemma 5.2.4.

Let $ \varphi $ be as in (3), and let $ A=\varphi (A_f)$ . Note that if $ T_n\in \mathbb{T}(pN)$ then $ T_n(E_f) \subset E_f$ since $ E_f$ is attached to a newform, and if, moreover $ p\nmid
n$ , then $ T_n(A) \subset A$ since the Hecke operators with index coprime to $ p$ commute with the degeneracy maps. Lemma 5.2.1 implies that

$\displaystyle E_f[\ell] = E_f[\mathfrak{m}] = \varphi (A_f[\lambda]) \subset A,
$

so $ \Psi = E_f[\ell]$ is a subgroup of $ A$ as a $ G_{\mathbb{Q}}$ -module. Let

$\displaystyle C= (A\times E_f)/\Psi,
$

where we embed $ \Psi$ in $ A\times E_f$ anti-diagonally, i.e., by the map $ x\mapsto (x,-x)$ . The antidiagonal map $ \Psi \to A\times E_f$ commutes with the Hecke operators $ T_n$ for $ p\nmid
n$ , so $ (A\times E_f)/\Psi$ is preserved by the $ T_n$ with $ p\nmid
n$ . Let $ R$ be the subring of $ {\mathrm{End}}(C)$ generated by the action of all Hecke operators $ T_n$ , with $ p\nmid
n$ . Also note that $ T_p \in {\mathrm{End}}(J_0(pN))$ acts by Hypothesis 3 as $ -1$ on $ E_f$ , but $ T_p$ need not preserve $ A$ .

Suppose for the moment that we have verified that the hypothesis of Theorem 4.1.1 are satisfied with $ A$ , $ B = E_f$ , $ C$ , $ Q = C/B$ , $ R$ as above and $ K=\mathbb{Q}$ . Then we obtain an injective homomorphism

$\displaystyle E(\mathbb{Q})/\ell E(\mathbb{Q}) \cong E_f(\mathbb{Q})/\ell E_f(\...
...yr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(\mathbb{Q}, C))[\mathfrak{m}].
$

We then apply Lemma 5.2.2 with $ n=\ell$ , $ A_f$ , $ A$ , and $ C$ , respectively, to see that

$\displaystyle E_f(\mathbb{Q})/\ell E_f(\mathbb{Q}) \subset {\mathrm{Ker}}({\mbo...
...y{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(\mathbb{Q}, C))[\lambda].
$

That $ E_f(\mathbb{Q})/\ell E_f(\mathbb{Q})$ lands in the $ \lambda$ -torsion is because the subgroup of $ {\mathrm{Vis}}_C({\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(\mathbb{Q}, E_f))$ that we constructed is $ \mathfrak{m}$ -torsion.

Finally, consider $ A\times E_f \to J_0(pN)$ given by $ (x,y)\mapsto x+y$ . Note that $ \Psi$ maps to 0 , since $ (x,-x)\mapsto 0$ and the elements of $ \Psi$ are of the form $ (x,-x)$ . We have a (not-exact!) sequence of maps

$\displaystyle {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontsh...
...amily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(\mathbb{Q}, J_0(pN)),
$

hence inclusions
$\displaystyle E_f(\mathbb{Q})/\ell E_f(\mathbb{Q})$ $\displaystyle \subseteq$ $\displaystyle {\mathrm{Ker}}({\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fonts...
...}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(\mathbb{Q}, C))$  
  $\displaystyle \subseteq$ $\displaystyle {\mathrm{Ker}}({\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fonts...
...amily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(\mathbb{Q}, J_0(pN))),$  

which gives the conclusion of the theorem.

It remains to verify the hypotheses of Theorem 4.1.1. That $ C=A+B$ is clear from the definition of $ C$ . Also, $ A\cap E_f = E_f[\ell]$ , which is finite. We explained above when defining $ R$ that each of $ A$ and $ E_f$ is preserved by $ R$ . Since $ K=\mathbb{Q}$ and $ \ell$ is odd the condition $ 1=e<\ell-1$ is satisfied. That $ A(\mathbb{Q})$ is finite follows from our hypothesis that $ L(A_f,1)\neq 0$ (by [KL89]).

It remains is to verify that the groups

$\displaystyle Q(\mathbb{Q})[\mathfrak{m}] ,\quad E_f(\mathbb{Q})[\mathfrak{m}] ,\quad \Phi_{A,q}(\mathbb{F}_q)[\mathfrak{m}] ,$    and $\displaystyle \Phi_{E_f,q}(\mathbb{F}_q)[\ell] ,
$

are 0 for all primes $ q\mid pN$ . Since $ \ell\in \mathfrak{m}$ , we have by Hypothesis 4 that

$\displaystyle E_f(\mathbb{Q})[\mathfrak{m}] = E_f(\mathbb{Q})[\ell] = 0.
$

We will now verify that $ Q(\mathbb{Q})[\mathfrak{m}]=0$ . From the definition of $ C$ and $ \Psi$ we have $ Q \cong A/\Psi.$ Let $ \lambda_p$ be as in Lemma 5.2.4 with $ a_n = a_n(E)$ . The map $ \varphi $ induces an isogeny of $ 2$ -power degree

$\displaystyle A_f/(A_f[\lambda]) \to A/\Psi.
$

Thus there is $ \lambda_p$ -torsion in $ (A_f/(A_f[\lambda]))(\mathbb{Q})$ if and only if there is $ \mathfrak{m}$ -torsion in $ (A/\Psi)(\mathbb{Q})$ . Thus it suffices to prove that $ (A_f/A_f[\lambda])(\mathbb{Q})[\lambda_p] = 0$ .

By Lemma 5.2.4, we have $ \lambda_p = \lambda$ , and by Lemma 5.2.5,

$\displaystyle (A_f/A_f[\lambda])[\lambda] \cong A_f[\lambda^2]/A_f[\lambda].
$

By [Maz77, § II.14], the quotient $ A_f[\lambda^2]/A_f[\lambda]$ injects into a direct sum of copies of $ A_f[\lambda]$ as Galois modules. But $ A_f[\lambda] \cong E[\ell]$ is irreducible, so $ (A_f[\lambda^2]/A_f[\lambda])(\mathbb{Q}) = 0$ , as required.

By Hypothesis 2, we have $ \Phi_{A_f,q}(\mathbb{F}_q)[\lambda] = 0$ for each prime divisor $ q\mid N$ .Since $ A$ is $ 2$ -power isogenous to $ A_f$ and $ \ell$ is odd, this verifies the Tamagawa number hypothesis for $ A$ . Our hypothesis that $ a_p(E) = -1$ implies that $ {\mathrm{Frob}}_p$ acts on $ \Phi_{E_f,p}(\overline{\mathbb{F}}_p)$ as $ -1$ . Thus $ \Phi_{E_f,p}(\mathbb{F}_p)[\ell] = 0$ since $ \ell$ is odd. This completes the proof. $ \qedsymbol$

Remark 5.3.1   An essential ingrediant in the proof of the above theorem is the multiplicity one result used in the paper of Wiles (see [Wil95, Thm. 2.1.]). Since this result holds for Jacobians $ J_H$ of the curves $ X_H(N)$ that are intermediate covers for the covering $ X_1(N) \rightarrow X_0(N)$ corresponding to subgroups $ H \subseteq (\mathbb{Z}/N\mathbb{Z})^\times$ (i.e., the Galois group of $ X_1(N) \rightarrow X_H$ is $ H$ ), one should be able to give a generalization of Theorem 5.1.3 which holds for newform subvarieties of $ J_H$ . This requires generalizing some results from [Rib90b] to arbitrary $ H$ .

William Stein 2006-06-21