The main theorem

Let $ A_{/K}$ , $ B_{/K}$ , $ C_{/K}$ , $ Q_{/K}$ , $ N$ and $ \ell$ be as above. Let $ R$ be a commutative subring of $ {\mathrm{End}}_K(C)$ that leaves $ A$ and $ B$ stable and let $ \mathfrak{m}$ be a maximal ideal of $ R$ of residue characteristic $ \ell$ . By the Néron mapping property, the subgroups $ \Phi_{A, v}(k_v)$ and $ \Phi_{B, v}(k_v)$ of $ k_v$ -points of the corresponding component groups can be viewed as $ R$ -modules.

Theorem 4.1.1 (Equivariant Visibility Theorem)   Suppose that $ A(K)$ has rank zero and that the groups $ Q(K)[\mathfrak{m}]$ , $ B(K)[\mathfrak{m}]$ , $ \Phi_{A,v}(k_v)[\mathfrak{m}]$ and $ \Phi_{B,v}(k_v)[\ell]$ are all trivial for all nonarchimedean places $ v$ of $ K$ . Then there is an injective homomorphism of $ R/\mathfrak{m}$ -vector spaces

$\displaystyle (B(K)/\ell{}B(K))[\mathfrak{m}]\hookrightarrow {\mathrm{Vis}}_C({...
...family{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(K, A))[\mathfrak{m}].$ (1)

Remark 4.1.2   Applying the above result for $ R=\mathbb{Z}$ , we recover the result of Agashe and Stein in the case when $ A(K)$ has Mordell-Weil rank zero. We could relax the hypothesis that $ A(K)$ is finite and instead give a bound on the dimension of the kernel of (1) in terms of the rank of $ A(K)$ similar to the bound in [AS02, Thm. 3.1]. We will not need this stronger result in our paper.

William Stein 2006-06-21