Strongly visible subgroups

Let $ A_{/\mathbb{Q}}$ be an abelian subvariety of $ J_0(N)_{/\mathbb{Q}}$ and let $ p\nmid N$ be a prime. Let

$\displaystyle \varphi = \delta_1^* + \delta_p^* : J_0(N) \to J_0(pN),$ (3)

where $ \delta_1^*$ and $ \delta_p^*$ are the pullback maps on equivalence classes of degree-zero divisors of the degeneracy maps $ \delta_1, \delta_p : X_0(pN) \rightarrow X_0(N)$ . Let $ \H ^1(\mathbb{Q},A)^{{\mathrm{odd}}}$ be the prime-to-2-part of the group $ \H ^1(\mathbb{Q},A)$ .

Definition 5.1.1 (Strongly Visibility)   The strongly visible subgroup of $ \H ^1(\mathbb{Q},A)$ for $ J_0(pN)$ is

$\displaystyle {\mathrm{Vis}}_{pN}\H ^1(\mathbb{Q},A) = {\mathrm{Ker}}\left(\H ^...
...rrow{\varphi _*} \H ^1(\mathbb{Q},J_0(pN))\right)
\subset \H ^1(\mathbb{Q},A).
$

Also,

$\displaystyle {\mathrm{Vis}}_{pN}{\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\f...
...}\selectfont Sh}}}(\mathbb{Q}, A) \cap {\mathrm{Vis}}_{pN}\H ^1(\mathbb{Q},A).
$

The reason we replace $ \H ^1(\mathbb{Q},A)$ by $ \H ^1(\mathbb{Q},A)^{{\mathrm{odd}}}$ is that the kernel of $ \varphi $ is a $ 2$ -group (see [Rib90b]).

Remark 5.1.2   We could obtain more visible subgroups by considering the map $ \delta_1^* - \delta_p^*$ in Definition 5.1.1. However, the methods of this paper do not apply to this map.

For a positive integer $ N$ , let

$\displaystyle \nu(N) = \frac{1}{6} \cdot \prod_{q^r\Vert N} (q^r+q^{r-1}) = \frac{1}{6} \cdot [{\mathrm{SL}}_2(\mathbb{Z}) : \Gamma_0(N)].
$

We call the number $ \nu(N)$ the Sturm bound (see [Stu87]).

Theorem 5.1.3   Let $ A_{/\mathbb{Q}}=A_f$ be a newform abelian subvariety of $ J_0(N)$ for which $ L(A_{/\mathbb{Q}},1)\neq 0$ and let $ p\nmid N$ be a prime. Suppose that there is a maximal ideal $ \lambda \subset \mathbb{T}(N)$ and an elliptic curve  $ E_{/\mathbb{Q}}$ of conductor $ pN$ such that:
  1. [Nondivisibility]The residue characteristic $ \ell$ of $ \lambda$ satisfies

    $\displaystyle \ell\nmid 2 \cdot N \cdot p \cdot \prod_{q\mid N} c_{E,q}.$

  2. [Component Groups] For each prime $ q\mid N$ ,

    $\displaystyle \Phi_{A,q}(\mathbb{F}_q)[\lambda] = 0.
$

  3. [Fourier Coefficients] Let $ a_n(E)$ be the $ n$ -th Fourier coefficient of the modular form attached to $ E$ , and $ a_n(f)$ the $ n$ -th Fourier coefficient of $ f$ . Assume that $ a_p(E) = -1$ ,

    $\displaystyle a_p(f) \equiv -(p+1)\pmod{\lambda}$    and $\displaystyle \quad a_q(f) \equiv a_q(E) \pmod{\lambda},
$

    for all primes $ q\neq p$ with $ q\leq \nu(pN)$ .

  4. [Irreducibility] The mod $ \ell$ representation $ \overline{\rho}_{E,\ell}$ is irreducible.

Then there is an injective homomorphism

$\displaystyle E(\mathbb{Q})/\ell E(\mathbb{Q}) \hookrightarrow {\mathrm{Vis}}_{...
...wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(\mathbb{Q}, A_f))[\lambda].
$

Remark 5.1.4   In fact, we have

$\displaystyle E(\mathbb{Q})/\ell E(\mathbb{Q}) \hookrightarrow {\mathrm{Ker}}({...
...wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(\mathbb{Q}, A_f))[\lambda],
$

where $ C\subset J_0(pN)$ is isogenous to $ A_f\times E$ .

William Stein 2006-06-21