Some auxiliary lemmas

We will use the following lemmas in the proof of Theorem 5.1.3. The notation is as in the previous section. In addition, if $ f \in S_2(\Gamma_0(N))$ , we denote by $ a_n(f)$ the $ n$ -th Fourier coefficient of $ f$ and by $ K_f$ and $ \mathcal{O}_f$ the Hecke eigenvalue field and its ring of integers, respectively.

Lemma 5.2.1   Suppose $ A_f\subset J_0(N)$ and $ A_g \subset J_0(pN)$ are attached to newforms $ f$ and $ g$ of level $ N$ and $ pN$ , respectively, with $ p\nmid N$ . Suppose that there is a prime ideal $ \lambda$ of residue characteristic $ \ell\nmid 2pN$ in an integrally closed subring $ \mathcal{O}$ of $ \overline{\mathbb{Q}}$ that contains the ring of integers of the composite field $ K = K_fK_g$ such that for $ q\leq \nu(pN)$ ,

\begin{displaymath}
a_q(f) \equiv
\begin{cases}a_q(g) \pmod{\lambda} & \text{i...
...$,}\\
(p+1)a_p(g)\pmod{\lambda} & \text{if $q=p$.}
\end{cases}\end{displaymath}

Assume that $ a_p(g) = -1$ . Let $ \lambda_f = \mathcal{O}_f \cap \lambda$ and $ \lambda_g = \mathcal{O}_g \cap \lambda$ and assume that $ A_f[\lambda_f]$ is an irreducible $ G_\mathbb{Q}$ -module. Then we have an equality

$\displaystyle \varphi (A_f[\lambda_f]) = A_g[\lambda_g]
$

of subgroups of $ J_0(pN)$ , where $ \varphi $ is as in (3).

Proof. Our hypothesis that $ a_p(f) \equiv -(p+1) \pmod{\lambda_f}$ implies, by the proofs in [Rib90b], that

$\displaystyle \varphi (A_f[\lambda_f]) \subset \varphi (A_f) \cap J_0(pN)_{p\text{-new}},
$

where $ J_0(pN)_{p\text{-new}}$ is the $ p$-new abelian subvariety of $ J_0(N)$ .

By [Rib90b, Lem. 1], the operator $ U_p=T_p$ on $ J_0(pN)$ acts as $ -1$ on $ \varphi (A_f[\lambda_f])$ . Consider the action of $ U_p$ on the 2-dimensional vector space spanned by $ \{f(q), f(q^p)\}$ . The matrix of $ U_p$ with respect to this basis is

$\displaystyle U_p = \left(
\begin{matrix}a_p(f)&p\ -1&0
\end{matrix}\right).
$

In particular, neither of $ f(q)$ and $ f(q^p)$ is an eigenvector for $ U_p$ . The characteristic polynomial of $ U_p$ acting on the span of $ f(q)$ and $ f(q^p)$ is $ x^2-a_p(f)x+p$ . Using our hypothesis on $ a_p(f)$ again, we have

$\displaystyle x^2 - a_p(f)x+p \equiv x^2 + (p+1) x + p \equiv
(x + 1) (x + p)\pmod{\lambda}.
$

Thus we can choose an algebraic integer $ \alpha$ such that

$\displaystyle f_1(q) = f(q) + \alpha f(q^p)
$

is an eigenvector of $ U_p$ with eigenvalue congruent to $ -1$ modulo $ \lambda$ . (It does not matter for our purposes whether $ x^2+a_p(f)x+p$ has distinct roots; nonetheless, since $ p\nmid N$ , [CV92, Thm. 2.1] implies that it does have distinct roots.) The cusp form $ f_1$ has the same prime-indexed Fourier coefficients as $ f$ at primes other than $ p$ . Enlarge $ \mathcal{O}$ if necessary so that $ \alpha\in\mathcal{O}$ . The $ p$ -th coefficient of $ f_1$ is congruent modulo $ \lambda$ to $ -1$ and $ f_1$ is an eigenvector for the full Hecke algebra. It follows from the recurrence relation for coefficients of the eigenforms that

$\displaystyle a_n(g) \equiv a_n(f_1) \pmod{\lambda}
$

for all integers $ n\leq \nu(pN)$ .

By [Stu87], we have $ g\equiv f_1\pmod{\lambda}$ , so $ a_q(g)
\equiv a_q(f)\pmod{\lambda}$ for all primes $ q\neq p$ . Thus by the Brauer-Nesbitt theorem [CR62], the 2-dimensional $ G_\mathbb{Q}$ -representations $ \varphi (A_f[\lambda_f])$ and $ A_g[\lambda_g]$ are isomorphic.

Let $ \mathfrak{m}$ be a maximal ideal of the Hecke algebra $ \mathbb{T}(pN)$ that annihilates the module $ A_g[\lambda_g]$ . Note that $ A_g[\mathfrak{m}]=A_g[\lambda_g]$ since $ A_g[\mathfrak{m}] \subset A_g[\lambda_g]$ and $ A_g[\lambda_g]\cong \varphi (A_f[\lambda_f])$ is irreducible as a $ G_\mathbb{Q}$ -module. The maximal ideal $ \mathfrak{m}$ gives rise to a Galois representation $ \overline{\rho}_\mathfrak{m}: G_\mathbb{Q}\rightarrow {\mathrm{GL}}_2(\mathbb{T}(pN)/\mathfrak{m})$ isomorphic to $ A_g[\lambda_g]$ , which is irreducible since the Galois module $ A_f[\lambda_f]$ is irreducible. Finally, we apply [Wil95, Thm. 2.1(i)] for $ H = (\mathbb{Z}/ N\mathbb{Z})^\times$ (i.e., $ J_H = J_0(N)$ ) to conclude that $ J_0(N)(\overline{\mathbb{Q}})[\mathfrak{m}] \cong (\mathbb{T}(pN)/\mathfrak{m})^2$ , i.e., the representation $ \overline{\rho}_\mathfrak{m}$ occurs with multiplicity one in $ J_0(pN)$ . Thus

$\displaystyle A_g[\lambda_g] = \varphi (A_f[\lambda_f]).
$

$ \qedsymbol$

Lemma 5.2.2   Suppose $ \varphi : A\to B$ and $ \psi:B \to C$ are homomorphisms of abelian varieties over a number field $ K$ , with $ \varphi $ an isogeny and $ \psi$ injective. Suppose $ n$ is an integer that is relatively prime to the degree of $ \varphi $ . If $ G={\mathrm{Vis}}_C({\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(\mathbb{Q}, B))[n^{\infty}]$ , then there is some injective homomorphism

$\displaystyle f: G \hookrightarrow {\mathrm{Ker}}\left\{(\psi\circ\varphi )_*:{...
...ily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(\mathbb{Q}, C)\right\},
$

such that $ \varphi _*(f(G)) = G$ .

Proof. Let $ m$ be the degree of the isogeny $ \varphi : A\to B$ . Consider the complementary isogeny $ \varphi ':B\to A$ , which satisfies $ \varphi \circ \varphi ' = \varphi ' \circ \varphi = [m]$ . By hypothesis $ m$ is coprime to $ n$ , so $ \gcd(m,\char93 G)=\gcd(m,n^{\infty})=1$ , hence

$\displaystyle \varphi _* (\varphi '_*(G)) = [m]G = G.
$

Thus $ \varphi '_*(G)$ maps, via $ \varphi _*$ , to $ G\subset {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(\mathbb{Q}, B)$ , which in turn maps to 0 in $ {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(\mathbb{Q}, C)$ . $ \qedsymbol$

Lemma 5.2.3   Let $ M$ be an odd integer coprime to $ N$ and let $ R$ be the subring of $ \mathbb{T}(N)$ generated by all Hecke operators $ T_n$ with $ \gcd(n,M) = 1$ . Then $ R = \mathbb{T}(N)$ .

Proof. See the lemma on page 491 of [Wil95]. (The condition that $ M$ is odd is necessary, as there is a counterexample when $ N=23$ and $ M=2$ .) $ \qedsymbol$

proof Let tex2html_wrap_inline$J = J_0(N)$ and tex2html_wrap_inline$T=T(N)$. Suppose tex2html_wrap_inline$p&mid#mid;M$ is a prime. We first show that there is a prime tex2html_wrap_inline$q&ne#neq;p$ such that tex2html_wrap_inline$T_q$ and tex2html_wrap_inline$T_p$ act in the same way on tex2html_wrap_inline$J[&ell#ell;]$. Consider the Galois representation displaymath &rho#rho;_&ell#ell;: G_Q&rarr#to;(Tate_&ell#ell;(J)). View tex2html_wrap_inline$Tate_&ell#ell;(J)$ as a tex2html_wrap_inline$2$-dimensional tex2html_wrap_inline$T&otimes#otimes;Q_&ell#ell;$-module, and the elements of tex2html_wrap_inline$(Tate_&ell#ell;(J))$ as tex2html_wrap_inline$2×2$-matrices with entries in tex2html_wrap_inline$T&otimes#otimes;Q_&ell#ell;$. For each prime tex2html_wrap_inline$q&nmid#nmid;N$, we have displaymath Tr(&rho#rho;_&ell#ell;(Frob_q)) = T_q &isin#in;T&otimes#otimes;Z_&ell#ell;. Since tex2html_wrap_inline$J[&ell#ell;]$ is finite, the representation displaymath &rho#rho;_&ell#ell;: G_Q&rarr#to;(J[&ell#ell;]) factors through the Galois group of a finite extension of tex2html_wrap_inline$Q$. The Chebotarev density theorem implies that there exists a prime tex2html_wrap_inline$q&ne#neq;p$ such that displaymath Tr(&rho#rho;_&ell#ell;(Frob_p)) = Tr(&rho#rho;_&ell#ell;(Frob_q)). Thus displaymath T_p &equiv#equiv;T_q &ell#ell;, where congruence modulo tex2html_wrap_inline$&ell#ell;$ means their difference is in tex2html_wrap_inline$&ell#ell;T$. Hence tex2html_wrap_inline$T_q$ acts on tex2html_wrap_inline$J[&ell#ell;]$ in the same way as tex2html_wrap_inline$T_p$.

Define tex2html_wrap_inline$S$ by the exact sequence displaymath 0 &rarr#to;R &rarr#to;T(N) &rarr#to;S &rarr#to;0. Let tex2html_wrap_inline$&ell#ell;$ be any prime. Then we have an exact sequence displaymath R&otimes#otimes;F_&ell#ell;&rarr#to;T(N)&otimes#otimes;F_&ell#ell;&rarr#to;S&otimes#otimes;F_&ell#ell;&rarr#to;0. Using what we did above,for each prime tex2html_wrap_inline$p&mid#mid;M$ we find a prime tex2html_wrap_inline$q&nmid#nmid;M$ such that tex2html_wrap_inline$T_q &equiv#equiv;T_p$ on tex2html_wrap_inline$J[&ell#ell;]$. Thus tex2html_wrap_inline$R&otimes#otimes;F_&ell#ell;&rarr#to;T&otimes#otimes;F_&ell#ell;$is surjective, hence tex2html_wrap_inline$S &otimes#otimes;F_&ell#ell;=0$. Since tex2html_wrap_inline$T$ is a finitely generated abelian group, so is tex2html_wrap_inline$S$, so we must have tex2html_wrap_inline$S=0$.

Lemma 5.2.4   Suppose $ \lambda$ is a maximal ideal of $ \mathbb{T}(N)$ with generators a prime $ \ell$ and $ T_n - a_n$ (for all $ n\in\mathbb{Z}$ ), with $ a_n \in \mathbb{Z}$ . For each integer $ p\nmid N$ , let $ \lambda_p$ be the ideal in $ \mathbb{T}(N)$ generated by $ \ell$ and all $ T_n - a_n$ , where $ n$ varies over integers coprime to $ p$ . Then $ \lambda = \lambda_p$ .

Proof. Since $ \lambda_p\subset\lambda$ and $ \lambda$ is maximal, it suffices to prove that $ \lambda_p$ is maximal. Let $ R$ be the subring of $ \mathbb{T}(N)$ generated by Hecke operators $ T_n$ with $ p\nmid
n$ . The quotient $ R/\lambda_p$ is a quotient of $ \mathbb{Z}$ since each generator $ T_n$ is equivalent to an integer. Also, $ \ell \in \lambda_p$ , so $ R/\lambda_p = \mathbb{F}_\ell$ . But by Lemma 5.2.3, $ R = \mathbb{T}(N)$ , so $ \mathbb{T}(N)/\lambda_p = \mathbb{F}_\ell$ , hence $ \lambda_p$ is a maximal ideal. $ \qedsymbol$

Lemma 5.2.5   Suppose that $ A$ is an abelian variety over a field $ K$ . Let $ R$ be a commutative subring of $ {\mathrm{End}}(A)$ and $ I$ an ideal of $ R$ . Then

$\displaystyle (A/A[I])[I] \cong A[I^2]/A[I],
$

where the isomorphism is an isomorphism of $ R[G_K]$ -modules.

Proof. Let $ a + A[I]$ , for some $ a \in A$ , be an $ I$ -torsion element of $ A/A[I]$ . Then by definition, $ xa \in A[I]$ for each $ x \in I$ . Therefore, $ a \in A[I^2]$ . Thus $ a + A[I] \mapsto a + A[I]$ determines a well-defined homomorphism of $ R[G_K]$ -modules

$\displaystyle \varphi : (A/A[I])[I] \rightarrow A[I^2]/A[I].
$

Clearly this homomorphism is injective. It is also surjective as every element $ a + A[I] \in A[I^2]/A[I]$ is $ I$ -torsion as an element of $ A/A[I]$ , as $ I{}a \in
A[I]$ . Therefore, $ \varphi $ is an isomorphism of $ R[G_K]$ -modules. $ \qedsymbol$

Lemma 5.2.6   Let $ \ell$ be a prime and let $ \phi : E \rightarrow E'$ be an isogeny of elliptic curves of degree coprime to $ \ell$ defined over a number field $ K$ . If $ v$ is any place of $ K$ then $ \ell \mid c_{E, v}$ if and only if $ \ell \mid c_{E', v}$ .

Proof. Consider the complementary isogeny $ \phi' : E' \rightarrow E$ . Both $ \phi$ and $ \phi'$ induce homomorphisms $ \phi : \Phi_{E, v}(k_v) \rightarrow \Phi_{E', v}(k_v)$ and $ \phi' : \Phi_{E',v}(k_v) \rightarrow \Phi_{E, v}(k_v)$ and $ \phi \circ \phi'$ and $ \phi' \circ \phi$ are multiplication-by-$ n$ maps. Since $ (n, \ell) = 1$ then $ \char93  \ker \phi$ and $ \char93  \ker \phi'$ must be coprime to $ \ell$ which implies the statement. $ \qedsymbol$

William Stein 2006-06-21