A Variant of Theorem 5.1.3 with Simpler Hypothesis

Proposition 5.4.1   Suppose $ A=A_f\subset J_0(N)$ is a newform abelian variety and $ q$ is a prime that exactly divides $ N$ . Suppose $ \mathfrak{m}\subset\mathbb{T}(N)$ is a non-Eisenstein maximal ideal of residue characteristic $ \ell$ and that $ \ell\nmid m_A$ , where $ m_A$ is the modular degree of $ A$ . Then $ \Phi_{A,q}(\overline{\mathbb{F}}_q)[\mathfrak{m}]=0$ .

Proof. The component group of $ \Phi_{J_0(N),q}(\overline{\mathbb{F}}_q)$ is Eisenstein by [Rib87], so

$\displaystyle \Phi_{J_0(N),q}(\overline{\mathbb{F}}_q)[\mathfrak{m}]=0.$

By Lemma 4.2.2, the image of $ \Phi_{J_0(N),q}(\overline{\mathbb{F}}_q)$ in $ \Phi_{A^{\vee},q}(\overline{\mathbb{F}}_q)$ has no  $ \mathfrak{m}$ torsion. By the main theorem of [CS01], the cokernel $ \Phi_{J_0(N),q}(\overline{\mathbb{F}}_q)$ in $ \Phi_{A^{\vee},q}(\overline{\mathbb{F}}_q)$ has order that divides $ m_A$ . Since $ \ell\nmid m_A$ , it follows that the cokernel also has no  $ \mathfrak{m}$ torsion. Thus Lemma 4.2.2 implies that $ \Phi_{A^{\vee},q}(\overline{\mathbb{F}}_q)[\mathfrak{m}]=0$ . Finally, the modular polarization $ A\to A^{\vee}$ has degree $ m_A$ , which is coprime to $ \ell$ , so the induced map $ \Phi_{A,q}(\overline{\mathbb{F}}_q)\to \Phi_{A^{\vee},q}(\overline{\mathbb{F}}_q)$ is an isomorphism on $ \ell$ primary parts. In particular, that $ \Phi_{A^{\vee},q}(\overline{\mathbb{F}}_q)[\mathfrak{m}]=0$ implies that $ \Phi_{A,q}(\overline{\mathbb{F}}_q)[\mathfrak{m}]=0$ . $ \qedsymbol$

If $ E$ is a semistable elliptic curve over  $ \mathbb{Q}$ with discriminant $ \Delta$ , then we see using Tate curves that $ \overline{c}_p = {\mathrm{ord}}_p(\Delta).
$

Theorem 5.4.2   Suppose $ A=A_f\subset J_0(N)$ is a newform abelian variety with $ L(A_{/\mathbb{Q}},1)\neq 0$ and $ N$ square free, and let $ \ell$ be a prime. Suppose that $ p\nmid N$ is a prime, and that there is an elliptic curve $ E$ of conductor $ pN$ such that:
  1. [Rank] The Mordell-Weil rank of $ E(\mathbb{Q})$ is positive.

  2. [Divisibility]We have $ a_p(E) = -1$ , $ \displaystyle \ell \mid \overline{c}_{E,p}$ , and

    $\displaystyle \ell\nmid 2 \cdot N \cdot p \cdot c_{E,p} \cdot
\prod_{q\mid N} \overline{c}_{E,q}.
$

  3. [Irreducibility] The mod $ \ell$ representation $ \overline{\rho}_{E,\ell}$ is irreducible.

  4. [Noncongruence]The representation $ \overline{\rho}_{E,\ell}$ is not isomorphic to any representation $ \overline{\rho}_{g,\lambda}$ where $ g\in S_2(\Gamma_0(N))$ is a newform of level dividing $ N$ that is not conjugate to $ f$ .
Then there is an element of order $ \ell$ in $ {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(\mathbb{Q}, A_f)$ that is not visible in $ J_0(N)$ but is strongly visible in $ J_0(pN)$ . More precisely, there is an inclusion

$\displaystyle E(\mathbb{Q})/\ell E(\mathbb{Q}) \hookrightarrow {\mathrm{Ker}}({...
...wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(\mathbb{Q}, A_f))[\lambda],
$

where $ C\subset J_0(pN)$ is isogenous to $ A_f\times E$ , the homomorphism $ A_f \to C$ has degree a power of $ 2$ , and $ \lambda$ is the maximal ideal of $ \mathbb{T}(N)$ corresponding to $ \overline{\rho}_{E,\ell}$ .

Proof. The divisibility assumptions of Hypothesis 2 on the $ \overline{c}_{E,q}$ imply that the Serre level of $ \overline{\rho}_{E,\ell}$ is $ N$ and since $ \ell\nmid N$ , the Serre weight is $ 2$ (see [RS01, Thm. 2.10]). Since $ \ell$ is odd, Ribet's level lowering theorem [Rib91] implies that there is some newform $ h =\sum b_n q^n\in S_2(\Gamma_0(N))$ and a maximal ideal $ \lambda$ over $ \ell$ such that $ a_q(E) \equiv b_q \pmod{\lambda}$ for all primes $ q\neq p$ . By our non-congruence hypothesis, the only possibility is that $ h$ is a $ G_{\mathbb{Q}}$ -conjugate of $ f$ . Since we can replace $ f$ by any Galois conjugate of $ f$ without changing $ A_f$ , we may assume that $ f=h$ . Also $ a_p(f) \equiv -(p+1)\pmod{\lambda}$ , as explained in [Rib83, pg. 506].

Hypothesis 3 implies that $ \lambda$ is not Eisenstein, and by assumption $ \ell\nmid m_A$ , so Proposition 5.4.1 implies that $ \Phi_{A,q}(\overline{\mathbb{F}}_q)[\lambda]=0$ for each $ q\mid N$ .

The theorem now follows from Theorem 5.1.3. $ \qedsymbol$

Remark 5.4.3   The condition $ a_p(E) = -1$ is redundant. Indeed, we have $ \overline{c}_{E,p} \neq c_{E,p}$ since $ \overline{c}_{E,p}$ is divisible by $ \ell$ and $ c_{E,p}$ is not. By studying the action of Frobenius on the component group at $ p$ one can show that this implies that $ E$ has nonsplit multiplicative reduction, so $ a_p(E) = -1$ .

Remark 5.4.4   The non-congruence hypothesis of Theorem 5.4.2 can be verified using modular symbols as follows. Let $ W \subset H_1(X_0(N),\mathbb{Z})_{{\mathrm{new}}}$ be the saturated submodule of $ H_1(X_0(N),\mathbb{Z})$ that corresponds to all newforms in $ S_2(\Gamma_0(N))$ that are not Galois conjugate to $ f$ . Let $ \overline{W} = W\otimes \mathbb{F}_{\ell}$ . We require that the intersection of the kernels of $ T_q\vert _{\overline{W}} - a_q(E)$ , for $ q\neq p$ , has dimension 0 .

William Stein 2006-06-21