Convergence of Infinite Continued Fractions

Lemma 5.2   For every $ n$ such that $ a_n$ is defined, we have

$\displaystyle x = [a_0, a_1, \ldots, a_{n}+t_n],$

and if $ t_{n}\neq 0$ then $ x = [a_0, a_1, \ldots, a_{n}, \frac{1}{t_n}].
$

Proof. We use induction. The statements are both true when $ n=0$ . If the second statement is true for $ n-1$ , then

$\displaystyle x$ $\displaystyle = \left[a_0,a_1, \ldots, a_{n-1},\frac{1}{t_{n-1}}\right]$    
  $\displaystyle =\left[a_0,a_1, \ldots, a_{n-1},a_n + t_n\right]$    
  $\displaystyle =\left[a_0,a_1, \ldots, a_{n-1},a_n, \frac{1}{t_n}\right].$    

Similarly, the first statement is true for $ n$ if it is true for $ n-1$ . $ \qedsymbol$

Theorem 5.2 (Continued Fraction Limit)   Let $ a_0,a_1,\ldots$ be a sequence of integers such that $ a_n>0$ for all $ n\geq 1$ , and for each $ n\geq 0$ , set $ c_n = [a_0, a_1, \ldots a_n].$ Then $ \displaystyle \lim_{n\rightarrow \infty} c_n$ exists.

Proof. For any $ m\geq n$ , the number $ c_n$ is a partial convergent of $ [a_0,\ldots,a_m]$ . By Proposition 5.1.13 the even convergents $ c_{2n}$ form a strictly increasing sequence and the odd convergents $ c_{2n+1}$ form a strictly decreasing sequence. Moreover, the even convergents are all $ \leq c_1$ and the odd convergents are all $ \geq c_0$ . Hence $ \alpha_0 = \lim_{n\rightarrow
\infty} c_{2n}$ and $ \alpha_1 = \lim_{n\rightarrow \infty} c_{2n+1}$ both exist and $ \alpha_0\leq \alpha_1$ . Finally, by Proposition 5.1.7

$\displaystyle \vert c_{2n} - c_{2n-1}\vert = \frac{1}{q_{2n}\cdot q_{2n-1}} \leq
\frac{1}{2n(2n-1)} \rightarrow 0,
$

so $ \alpha_0 = \alpha_1$ . $ \qedsymbol$

We define

$\displaystyle [a_0, a_1, \ldots ] = \lim_{n\rightarrow \infty} c_n.
$

Example 5.2   We illustrate the theorem with $ x=\pi$ . As in the proof of Theorem 5.2.6, let $ c_n$ be the $ n$ th partial convergent to $ \pi$ . The $ c_n$ with $ n$ odd converge down to $ \pi$

$\displaystyle c_1 = 3.1428571\ldots,  c_3 = 3.1415929\ldots,  c_5=3.1415926\ldots$

whereas the $ c_n$ with $ n$ even converge up to $ \pi$

$\displaystyle c_2 = 3.1415094\ldots,  c_4 = 3.1415926\ldots,  c_6=3.1415926\ldots.$

Theorem 5.2   Let $ a_0, a_1, a_2, \ldots $ be a sequence of real numbers such that $ a_n>0$ for all $ n\geq 1$ , and for each $ n\geq 0$ , set $ c_n = [a_0, a_1, \ldots a_n].$ Then $ \displaystyle \lim_{n\rightarrow \infty} c_n$ exists if and only if the sum $ \sum_{n=0}^{\infty}
a_n$ diverges.

Proof. We only prove that if $ \sum a_n$ diverges then $ \lim_{n\rightarrow \infty}
c_n$ exists. A proof of the converse can be found in [#!wall!#, Ch. 2, Thm. 6.1].

Let $ q_n$ be the sequence of ``denominators'' of the partial convergents, as defined in Section 5.1.1, so $ q_{-2}=1$ , $ q_{-1}=0$ , and for $ n\geq 0$ ,

$\displaystyle q_n = a_n q_{n-1} + q_{n-2}.
$

As we saw in the proof of Theorem 5.2.6, the limit $ \lim_{n\rightarrow \infty}
c_n$ exists provided that the sequence $ \{q_nq_{n-1}\}$ diverges to positive infinity.

For $ n$ even,

$\displaystyle q_n$ $\displaystyle = a_n q_{n-1} + q_{n-2}$    
  $\displaystyle = a_n q_{n-1} + a_{n-2}q_{n-3} + q_{n-4}$    
  $\displaystyle = a_n q_{n-1} + a_{n-2}q_{n-3} + a_{n-4}q_{n-5} + q_{n-6}$    
  $\displaystyle = a_n q_{n-1} + a_{n-2}q_{n-3} + \cdots + a_2 q_{1} + q_0$    

and for $ n$ odd,

$\displaystyle q_n = a_n q_{n-1} + a_{n-2}q_{n-3} + \cdots + a_1 q_{0} + q_{-1}.
$

Since $ a_n>0$ for $ n>0$ , the sequence $ \{q_n\}$ is increasing, so $ q_i\geq 1$ for all $ i\geq 0$ . Applying this fact to the above expressions for $ q_n$ , we see that for $ n$ even

$\displaystyle q_n \geq a_n + a_{n-2} + \cdots + a_2,
$

and for $ n$ odd

$\displaystyle q_n \geq a_n + a_{n-2} + \cdots + a_1.
$

If $ \sum a_n$ diverges, then at least one of $ \sum a_{2n}$ or $ \sum a_{2n+1}$ must diverge. The above inequalities then imply that at least one of the sequences $ \{q_{2n}\}$ or $ \{q_{2n+1}\}$ diverge to infinity. Since $ \{q_n\}$ is an increasing sequence, it follows that $ \{q_{n} q_{n-1}\}$ diverges to infinity. $ \qedsymbol$

Example 5.2   Let $ a_n = \frac{1}{n\log(n)}$ for $ n\geq 2$ and $ a_0=a_1=0$ . By the integral test, $ \sum a_n$ diverges, so by Theorem 5.2.8 the continued fraction $ [a_0,a_1,a_2,\ldots]$ converges. This convergence is very slow, since, e.g.

$\displaystyle [a_0, a_1, \ldots, a_{9999}] = 0.5750039671012225425930\ldots$

yet

$\displaystyle [a_0, a_1, \ldots, a_{10000}] = 0.7169153932917378550424\ldots.$

Theorem 5.2   Let $ x\in\mathbb{R}$ be a real number. Then $ x$ is the value of the (possibly infinite) simple continued fraction $ [a_0,a_1,a_2,\ldots]$ produced by the continued fraction procedure.

Proof. If the sequence is finite then some $ t_n=0$ and the result follows by Lemma 5.2.5. Suppose the sequence is infinite. By Lemma 5.2.5,

$\displaystyle x = [a_0, a_1, \ldots, a_n, \frac{1}{t_n}].
$

By Proposition 5.1.5 (which we apply in a case when the partial quotients of the continued fraction are not integers!), we have

$\displaystyle x = \frac{\displaystyle \frac{1}{t_n} \cdot p_n + p_{n-1}}{\displaystyle \frac{1}{t_n}\cdot q_n + q_{n-1}}.
$

Thus if $ c_n=[a_0,a_1,\ldots,a_n]$ , then

$\displaystyle x - c_n$ $\displaystyle = x - \frac{p_n}{q_n}$    
  $\displaystyle =\frac{\frac{1}{t_n} p_n q_n + p_{n-1} q_n - \frac{1}{t_n} p_n q_n - p_n q_{n-1}} {q_n \left(\frac{1}{t_n} q_n + q_{n-1}\right)}.$    
  $\displaystyle = \frac{p_{n-1} q_n - p_{n}q_{n-1}}{q_n\left(\frac{1}{t_n} q_n + q_{n-1}\right)}$    
  $\displaystyle = \frac{(-1)^n}{q_n\left(\frac{1}{t_n} q_n + q_{n-1}\right)}.$    

Thus

$\displaystyle \vert x - c_n\vert$ $\displaystyle = \frac{1}{q_n\left(\frac{1}{t_n} q_n + q_{n-1}\right)}$    
  $\displaystyle < \frac{1}{q_n(a_{n+1} q_n + q_{n-1})}$    
  $\displaystyle = \frac{1}{q_n \cdot q_{n+1}} \leq \frac{1}{n(n+1)} \rightarrow 0.$    

In the inequality we use that $ a_{n+1}$ is the integer part of $ \frac{1}{t_n}$ , and is hence $ \leq \frac{1}{t_n}<1$ , since $ t_n<1$ . $ \qedsymbol$

This corollary follows from the proof of the above theorem.

Corollary 5.2 (Convergence of continued fraction)   Let $ a_0,a_1,\ldots$ define a simple continued fraction, and let $ x=[a_0,a_1,\ldots]\in\mathbb{R}$ be its value. Then for all $ m$ ,

$\displaystyle \left\vert x - \frac{p_m}{q_m}\right\vert
< \frac{1}{q_m \cdot q_{m+1}}.
$

Proposition 5.2   If $ x$ is a rational number then the sequence $ a_0,a_1,\ldots$ produced by the continued fraction procedure terminates.

Proof. Let $ [b_0,b_1,\ldots, b_m]$ be the continued fraction representation of $ x$ that we obtain using Algorithm 1.1.13, so the $ b_i$ are the partial quotients at each step. If $ m=0$ , then $ x$ is an integer, so we may assume $ m>0$ . Then

$\displaystyle x = b_0 + 1/[b_1,\ldots,b_m].
$

If $ [b_1,\ldots,b_m]=1$ then $ m=1$ and $ b_1=1$ , which will not happen using Algorithm 1.1.13, since it would give $ [b_0+1]$ for the continued fraction of the integer $ b_0+1$ . Thus $ [b_1,\ldots,b_m]>1$ , so in the continued fraction algorithm we choose $ a_0 = b_0$ and $ t_0 = 1/[b_1, \ldots, b_m]$ . Repeating this argument enough times proves the claim. $ \qedsymbol$

William 2007-06-01