next up previous
Next: Example Up: NONVANISHING TWISTS AND VISIBLE Previous: -Torsion

Visualizing Mordell-Weil in Rank 0 Sha

Theorem 5.1   Let $ E$ be an elliptic curve over  $ \mathbb{Q}$. Conjecture 3.1 implies that for every rigid prime $ p$, there is an abelian extension $ K/\mathbb{Q}$ of degree $ p$ such that

$\displaystyle E(\mathbb{Q})/p E(\mathbb{Q}) \cong \Vis_J({\mbox{{\fontencoding{...
...ntfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(A/\mathbb{Q})[p]),
$

where $ J=\Res_{K/\mathbb{Q}} (E_K)$ and $ A\subset J$ has dimension $ p-1$ and rank 0.

Proof. Conjecture 3.1 produces a prime $ \ell\equiv 1\pmod{p}$ such that $ L(E,\chi_{p,\ell},1)\neq 0$ and $ a_\ell(E)\not\equiv 2\pmod{p}$. Since $ L(E,\chi_{p,\ell},1)\neq 0$ and $ A$ is attached to $ f\otimes \chi_{p,\ell}$, Kato's work implies that $ A(\mathbb{Q})$ is finite. Lemma 4.1 implies that

$\displaystyle p\nmid \char93 (J/E)(\mathbb{Q})_{\tor}\cdot
\char93 E(\mathbb{Q}...
...Phi_{A,\ell}(\mathbb{F}_{\ell})\cdot
\char93 \Phi_{E,\ell}(\mathbb{F}_{\ell}).
$

To apply Theorem 2.1, we just need that $ p\nmid \char93 \Phi_{A,p}(\mathbb{F}_p)$. This is true becaue $ \Phi_{A,p}(\overline{\mathbb{F}}_p) = \Phi_{A_K,\wp}(\overline{\mathbb{F}}_p)=0$, since $ K/\mathbb{Q}$ is unramified at $ p$, and $ A_K=E_K\times \cdots \times E_K$ and $ E$ has good reduction at $ p$. Thus

$\displaystyle E(\mathbb{Q})/p E(\mathbb{Q}) \cong \Vis_J({\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(A)[p]),
$

as claimed.

$ \qedsymbol$



BSD Connection: Let $ E$ be an elliptic curve. Suppose we don't know anything about $ E(\mathbb{Q})$, but do know that $ L(E,1)=0$. If we could prove that there is a rigid prime such that

$\displaystyle {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontsh...
...hbb{Q})[p]\neq 0\qquad\text{(as {\em better be} predicted by the BSD formula)}
$

and

$\displaystyle {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(E/K)[p]=0,
$

then Theorem 5.1 would imply that $ E(\mathbb{Q})$ is infinite.


next up previous
Next: Example Up: NONVANISHING TWISTS AND VISIBLE Previous: -Torsion
William A Stein 2001-10-01