next up previous
Next: -Torsion Up: NONVANISHING TWISTS AND VISIBLE Previous: Visibility Theory

A Conjecture About Nonvanishing of Twists

Fix $ E$ and suppose $ p$ is rigid for $ E$. For every $ \ell\equiv 1\pmod{p}$, fix

$\displaystyle \chi_{p,\ell} : (\mathbb{Z}/\ell\mathbb{Z})^* \rightarrow\!\!\!\!\rightarrow \boldsymbol{\mu}_p
$

of order $ p$ and conductor $ \ell$.

Conjecture 3.1 (-)   There exists a prime $ \ell\nmid N_E$ such that

$\displaystyle L(E,\chi_{p,\ell},1)\neq 0
$

and

$\displaystyle a_\ell(E)\not\equiv \ell+1\pmod{p}.
$



Evidence: The conjecture is true for every pair $ (E,p)$ I've tried, e.g., for all rigid $ p<50$ for the first $ 20$ rank $ 1$ optimal quotients of $ J_0(N)$ and the first two rank $ 2$ quotients.


The following ``Density Conjecture'' will not be needed for our application:

Conjecture 3.2 (-)   The set of primes $ \ell\equiv 1\pmod{p}$ such that $ L(E,\chi_{p,\ell},1)=0$ has Dirichlet density 0 amongst all primes.



William A Stein 2001-10-01