next up previous
Next: Every Element is Visible Up: Visibility Previous: Visible Elements of


Visible Elements of $ {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(A)$

Let $ A$ be an abelian variety over a number field $ K$. The Shafarevich-Tate group of $ A$, which is defined below, measures the failure of the local-to-global principle for certain torsors. The Shafarevich-Tate group of $ A$ is

$\displaystyle {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontsh...
...ectfont Sh}}}(A) := \Ker\left(H^1(K,A) \rightarrow \prod_{v} H^1(K_v,A)\right),$

where the product is over all places of $ K$.

Definition 1.2   If $ \iota: A\hookrightarrow J$ is an embedding, then the visible subgroup of $ {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(A)$ with respect to $ \iota$ is

$\displaystyle \Vis_J({\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}...
...ncoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(J)).$



William A Stein 2002-02-27