Table of Strong Visibility at Higher Level

The following is a table that gives the known examples of $ {A_f}_{/\mathbb{Q}}$ with square free conductor $ N \leq 1339$ , such that the Birch and Swinnerton-Dyer conjectural formula predicts an odd prime divisor $ \ell$ of $ {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(\mathbb{Q}, A_f)$ , but $ \ell$ does not divide the modular degree of $ A_f$ . These were taken from [AS05]. If there is an entry in the fourth column, this means we have verified the hypothesis of Theorem 5.4.2, hence there really is a nonzero element in $ {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(\mathbb{Q}, A_f)$ that is not visible in $ J_0(N)$ , but is strongly visible in $ J_0(pN)$ . The notation in the fourth column is $ (p,E,q)$ , where $ p$ is the prime used in Theorem 5.4.2, $ E$ is an elliptic curve, denoted using a Cremona label, and $ q\neq p$ is a prime such that

$\displaystyle \bigcap_{q'\leq q} {\mathrm{Ker}}(T_q'\vert _{\overline{W}} - a_{q'}(E)) = 0.
$



$ A_f$ dim $ \ell\mid{\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(A_f)_?$ moddeg $ (p,E,q)$ 's
551H 18 3 $ 2^{?} \cdot 13^2$ (2, 1102A1, -)
767E 23 3 $ 2^{34}$ (2, 1534B1, 3)
959D 24 3 $ 2^{32}\cdot 583673$ (2, 1918C1, 5), (7, 5369A1,2)
1337E 33 3 $ 2^{59} \cdot 71$ (2, 2674A1, 5)
1339G 30 3 $ 2^{48} \cdot 5776049$ (2, 2678B1, 3), (11, 14729A1,2)

William Stein 2006-06-21