Level 959

We do similar computations for a $ 24$ -dimensional abelian subvariety of $ J_0(959)$ . We have $ 959=7\cdot 137$ , which is square free. There are five newform abelian subvarieties of the Jacobian, $ A_2, A_7, A_{10}, A_{24}$ and $ A_{26}$ , whose dimensions are the corresponding subscripts. Let $ A_f = A_{24}$ be the 24-dimensional newform abelian subvariety.

Proposition 6.2.1   There is an element of order 3 in $ {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(A_f/\mathbb{Q})$ which is not visible in $ J_0(959)$ but is strongly visible in $ J_0(2 \cdot 959)$ .

Proof. Using Magma we find that $ m_A = 2^{32} \cdot 583673$ , which is coprime to $ 3$ . Thus we apply Theorem 5.4.2 with $ \ell=3$ and $ p=2$ . Consulting [Cre] we find the curve E=1918C1, with Weierstrass equation

$\displaystyle y^2 +xy + y = x^3 - 22x - 24,
$

with Mordell-Weil group $ E(\mathbb{Q})\cong \mathbb{Z}\oplus \mathbb{Z}\oplus (\mathbb{Z}/2\mathbb{Z})$ , and

$\displaystyle c_2 = 2, c_7 = 2, c_{137}=1, \overline{c}_2 = 6, \overline{c}_7 = 2, \overline{c}_{137}=1.
$

Using [Cre] we find that $ E$ has no rational $ 3$ -isogeny. The modular form attached to $ E$ is

$\displaystyle g = q - q^2 - 2q^3 + q^4 - 2q^5 + \cdots,
$

and we have

$\displaystyle \det(T_2\vert _{\overline{W}} - (-2)) = 2177734400 \equiv 2 \pmod{3},
$

which completes the verification. $ \qedsymbol$

William Stein 2006-06-21