Proof of Quadratic Reciprocity

It is now straightforward to deduce the quadratic reciprocity law.

Proof. [First Proof of Theorem 4.1.7] First suppose that $ p\equiv q\pmod{4}$ . By swapping $ p$ and $ q$ if necessary, we may assume that $ p>q$ , and write $ p-q=4a$ . Since $ p=4a+q$ ,

$\displaystyle \left(\frac{p}{q}\right) = \left(\frac{4a+q}{q}\right) = \left(\f...
...= \left(\frac{4}{q}\right) \left(\frac{a}{q}\right) =
\left(\frac{a}{q}\right),$

and

$\displaystyle \left(\frac{q}{p}\right) = \left(\frac{p-4a}{p}\right) = \left(\frac{-4a}{p}\right) = \left(\frac{-1}{p}\right)\cdot
\left(\frac{a}{p}\right).$

Proposition 4.3.4 implies that $ \left(\frac{a}{q}\right) = \left(\frac{a}{p}\right)$ , since $ p\equiv q\pmod{4a}$ . Thus

$\displaystyle \left(\frac{p}{q}\right)\cdot\left(\frac{q}{p}\right) = \left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} =
(-1)^{\frac{p-1}{2}\cdot \frac{q-1}{2}},$

where the last equality is because $ \frac{p-1}{2}$ is even if and only if $ \frac{q-1}{2}$ is even.

Next suppose that $ p\not\equiv q\pmod{4}$ , so $ p\equiv -q\pmod{4}$ . Write $ p+q=4a$ . We have

$\displaystyle \left(\frac{p}{q}\right) = \left(\frac{4a-q}{q}\right) = \left(\frac{a}{q}\right),$    and $\displaystyle \quad
\left(\frac{q}{p}\right) = \left(\frac{4a-p}{p}\right) = \left(\frac{a}{p}\right).$

Since $ p\equiv -q\pmod{4a}$ , Proposition 4.3.4 implies that $ \left(\frac{a}{q}\right) = \left(\frac{a}{p}\right)$ . Since $ (-1)^{\frac{p-1}{2}\cdot
\frac{q-1}{2}}=1$ , the proof is complete. $ \qedsymbol$



William 2007-06-01