next up previous
Next: The Visibility Dimension for Up: The Visibility Dimension Previous: The Visibility Dimension


A Simple Bound

The following elementary lemma, which the second author learned from Hendrik Lenstra, will be used to give a bound on the visibility dimension in terms of the order of $ c$ and the dimension of $ A$.

Lemma 2.2   Let $ G$ be a group,  $ M$ be a finite (discrete) $ G$-module, and $ c \in H^1(G,M)$. Then there is a subgroup $ H$ of $ G$ such that $ \res_H(c)=0$ and $ \char93 (G/H) \leq \char93 M$.

Proof. Let $ f:G \rightarrow M$ be a cocycle corresponding to $ c$, so $ f(\tau\sigma) =
f(\tau) + \tau f(\sigma)$ for all $ \tau, \sigma\in G$. Let $ H =
\ker(f) = \{\sigma \in G : f(\sigma) = 0\}$. The map $ \tau H \mapsto
f(\tau)$ is a well-defined injection from the coset space $ G/H$ to $ M$. $ \qedsymbol$

The following is a general bound on the visibility dimension.

Proposition 2.3   The visibility dimension of any  $ c\in H^1(K,A)$ is at most $ d\cdot{}n^{2d}$ where $ n$ is the order of $ c$ and $ d$ is the dimension of $ A$.

Proof. The map $ H^1(K,A[n])\rightarrow H^1(K,A)[n]$ is surjective and $ A[n]$ has order $ n^{2d}$, so Lemma 2.2 implies that there is an extension $ L$ of $ K$ of degree at most $ n^{2d}$ such that $ \res_L(c)=0$. The proof of Proposition 1.3 implies that $ c$ is visible in an abelian variety of dimension $ [L:K]\cdot \dim A\leq d n^{2d}$. $ \qedsymbol$


next up previous
Next: The Visibility Dimension for Up: The Visibility Dimension Previous: The Visibility Dimension
William A Stein 2002-02-27