next up previous
Next: Bibliography Up: Some Examples Previous: Visibility in an Abelian


Invisible Elements that Becomes Visible at Higher Level

Consider the elliptic curve $ E$ of conductor $ 5389=17\cdot 317$ defined by the equation

$\displaystyle y^2+xy+y =x^3 - 35590x-2587197.$

In [CM00], Cremona and Mazur observe that the BSD conjecture implies that $ \char93 {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(E)=9$, but they find that $ \Vis_{J_0(5389)}({\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(E)[3])=\{0\}$. We will now verify, without assuming any conjectures, that $ 9\mid \char93 {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(E)$ and that these $ 9$ elements of $ {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(E)$ are visible in $ J_0(5389\cdot 7)$.

First note that the mod $ 3$ representation $ \rho_{E,3}$ attached to $ E$ is irreducible because $ E$ is semistable and admits no $ 3$-isogeny (according to [Cre]). The newform attached to $ E$ is

$\displaystyle f_E = q + q^2 - 2q^3 - q^4 + 2q^5 - 2q^6 - 2q^7 + \cdots,$

and $ a_7^2 = (-2)^2 \equiv (7+1)^2 \pmod{3}$, so Ribet's level-raising theorem [Rib90] implies that there is a newform $ g$ of level $ 7\cdot 5389$ that is congruent modulo $ 3$ to $ f_E$. This observation led us to the following proposition.

Proposition 4.2   Map $ E$ to $ J_0(7\cdot 5389)$ by the sum of the two maps on Jacobians induced by the two degeneracy maps $ X_0(7\cdot 5389) \rightarrow X_0(5389)$. The image $ E'$ of $ E$ in $ J_0(7\cdot 5389)$ is $ 2$-isogenous to $ E$ and

$\displaystyle (\mathbf{Z}/3\mathbf{Z})^2 \subset \Vis_{J_0(7\cdot 5389)}({\mbox...
...coding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(E')).$

Proof. It is easy to see from the discussion in [Rib90] that the kernel of the sum of the two degeneracy maps $ J_0(5389) \rightarrow J_0(7\cdot
5389)$ is a group of $ 2$-power order, so $ E'$ is isogenous to $ E$ via an isogeny of degree a power of $ 2$.

Consider the elliptic curve $ F$ defined by $ y^2 - y = x^3 + x^2 + 34x - 248$. Using Cremona's programs tate and mwrank we find that $ F$ has conductor $ 7\cdot 5389$, and that $ F(\mathbf{Q}) \cong \mathbf{Z}\times \mathbf{Z}$. The Tamagawa numbers of $ F$ at $ 7$, $ 17$, and $ 317$ are $ 1$, $ 2$, and $ 1$, respectively. The newform attached to $ F$ is

$\displaystyle f_F = q - 2q^2 + q^3 + 2q^4 - q^5 - 2q^6 - q^7 + \cdots$

and, by [Stu87], we prove that $ f_E(q) + f_E(q^7) \equiv f_F\pmod{3}$ by checking this congruence for the first $ 7632=[\SL_2(\mathbf{Z}):\Gamma_0(7\cdot 5389)]/6$ terms. Since $ 2\leq k < 3$ and $ 3\nmid 7\cdot 5389$, the first part of the multiplicity one theorem of [Edi92, §9] implies that $ F[3] = E'[3]$.

Finally, we apply Theorem 3.1 with $ A=E'$, $ B=F$, $ J=A+B\subset J_0(7\cdot 5389)$, $ N=7\cdot 5389$, and $ n=3$. It is routine to check the hypothesis. For example, the hypothesis that $ J/B$ has no $ \mathbf{Q}$-rational $ 3$-torsion can be checked as follows. Cremona's online tables imply that $ E$ admits no $ 3$-isogeny, so $ E[3]$ is irreducible. Since $ J/B$ is isogenous to $ E$, the representation $ (J/B)[3]$ is also irreducible, so $ (J/B)(\mathbf{Q})[3]=\{0\}$. Thus, by Theorem 3.1, we have $ (\mathbf{Z}/3\mathbf{Z})^2 \subset \Vis_J({\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(E')).$ To finish the proof, note that $ \Vis_J({\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}...
...oding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(E')).
$ $ \qedsymbol$

Since $ E'$ is $ 2$-isogenous to $ E$ and $ 9\mid \char93 {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(E')$, it follows that $ 9\mid \char93 {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(E)$, as predicted by the BSD conjecture.


next up previous
Next: Bibliography Up: Some Examples Previous: Visibility in an Abelian
William A Stein 2002-02-27