next up previous
Next: Invisible Elements that Becomes Up: Some Examples Previous: Some Examples


Visibility in an Abelian Variety of Dimension $ 20$

Using the methods described in [AS02], we find that $ S_2(\Gamma_0(389))$ contains exactly five Galois-conjugacy classes of newforms, and these are defined over extensions of  $ \mathbf{Q}$ of degrees $ 1$, $ 2$, $ 3$, $ 6$, and $ 20$. Thus $ J=J_0(389)$ decomposes, up to isogeny, as a product $ A_1\times A_2 \times A_3\times A_6 \times
A_{20}$ of abelian varieties, where $ d=\dim A_d$ and $ A_d$ is the quotient corresponding to the appropriate Galois-conjugacy class of newforms.

Next we consider the arithmetic of each $ A_d$. Using [AS02], we find that

$\displaystyle L(A_1,1)=L(A_2,1)=L(A_3,1)=L(A_6,1)=0,$

and

$\displaystyle \frac{L(A_{20},1)}{\Omega_{A_{20}}} = \frac{5^2\cdot 2^?}{97},$

where $ 2^?$ is a power of $ 2$. Using [AS02], we find that $ \char93 A_{20}(\mathbf{Q}) = 97$ and the Tamagawa number of $ A_{20}$ at $ 389$ is also $ 97$. The BSD Conjecture then predicts that $ \char93 {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(A_{20}) = 5^2\cdot 2^?$. The following proposition provides support for this conjecture.

Proposition 4.1   There is an inclusion

$\displaystyle (\mathbf{Z}/5\mathbf{Z})^2 \cong A_1(\mathbf{Q})/5 A_1(\mathbf{Q}...
...\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(A_{20}^{\vee})).$

Proof. Let $ A=A_{20}^{\vee}$, $ B=A_{1}^{\vee}=A_1$ and $ J=A+B\subset J_0(389)$. Using algorithms in [AS02], we find that $ A\cap B \cong (\mathbf{Z}/4)^2\times
(\mathbf{Z}/5\mathbf{Z})^2$, so $ B[5] \subset A$. Since $ 5$ does not divide the numerator of $ (389-1)/12$, it does not divide the Tamagawa numbers or the orders of the torsion subgroups of $ A$, $ B$, $ J$, and $ J/B$ (we also verified this using a modular symbols computations), so Theorem 3.1 implies that there is an injective map

$\displaystyle A_1(\mathbf{Q})/5 A_1(\mathbf{Q})
\hookrightarrow \Vis_{J}({\mbo...
...}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(A_{20}^{\vee}).$

To finish, note that Cremona [Cre97] has verified that $ A_1(\mathbf{Q}) \approx \mathbf{Z}\times \mathbf{Z}$. $ \qedsymbol$


next up previous
Next: Invisible Elements that Becomes Up: Some Examples Previous: Some Examples
William A Stein 2002-02-27