Complex Numbers

A complex number is an expression of the form $ a+bi$, where $ a$ and $ b$ are real numbers, and $ i^2=-1$. We add and multiply complex numbers as follows:

$\displaystyle (a+bi) + (c+di)$ $\displaystyle = (a+c) + (b+d)i$    
$\displaystyle (a+bi) \cdot (c+di)$ $\displaystyle = (ac-bd) + (ad+bc)i$    

The complex conjugate of a complex number is

$\displaystyle \overline{a+bi} = a-bi.
$

Note that

$\displaystyle (a+bi) (\overline{a+bi}) = a^2 + b^2
$

is a real number (has no complex part).

If $ c+di \neq 0$, then

$\displaystyle \frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{c^2 + d^2}
= \frac{1}{c^2+d^2}((ac+bd) + (bc-ad)i).
$

Example 4.3.1   $ (1-2i)(8-3i) = 2 - 19i$ and $ 1/(1+i) = (1-i) / 2 = 1/2 - (1/2) i$.

Complex numbers are incredibly useful in providing better ways to understand ideas in calculus, and more generally in many applications (e.g., electrical engineering, quantum mechanics, fractals, etc.). For example,



Subsections
William Stein 2006-03-15