Examples

Example 4.2.3   Find the area enclosed by one leaf of the four-leaved rose $ r=\cos(2\theta)$.

Solution: We need the boundaries of integration. Start at $ \theta=-\pi/4$ and go to $ \theta=\pi/4$. As a check, note that $ \cos((-\pi/4) \cdot 2) = 0 = \cos((\pi/4) \cdot 2).$ We evaluate

$\displaystyle \frac{1}{2} \cdot \int_{-\pi/4}^{\pi/4} \cos(2\theta)^2 d\theta$ $\displaystyle = \int_{0}^{\pi/4} \cos(2\theta)^2 d\theta$   (even function)    
  $\displaystyle = \frac{1}{2} \int_{0}^{\pi/4} (1+\cos(4\theta)) d\theta$    
  $\displaystyle = \frac{1}{2} \left[ \theta + \frac{1}{4}\cdot \sin(4\theta)\right]_{0}^{\pi/4}$    
  $\displaystyle = \frac{\pi}{8}.$    

We used that

$\displaystyle \cos^2(x) = (1+\cos(2x))/2$   and$\displaystyle \qquad
\sin^2(x) = (1-\sin(2x))/2,
$ (4.6)

which follow from

$\displaystyle \cos(2x) = \cos^2(x) - \sin^2(x)
= 2\cos^2(x) - 1 = 1-2\sin^2(x).$

Example 4.2.4   Find area of region inside the curve $ r=3\cos(\theta)$ and outside the cardiod curve $ r=1+\cos(\theta)$.
Figure: Graph of $ r=3\cos(\theta)$ and $ r=1+\cos(\theta)$
% latex2html id marker 12951
\includegraphics[width=0.6\textwidth]{graphs/example_card}

Solution: This is the same as before. It's the difference of two areas. Figure out the limits, which are where the curves intersect, i.e., the $ \theta$ such that

$\displaystyle 3\cos(\theta) = 1+\cos(\theta).$

Solving, $ 2\cos(\theta) = 1$, so $ \cos(\theta) = 1/2$, hence $ \theta = \pi/3$ and $ \theta = -\pi/3$. Thus the area is

$\displaystyle A$ $\displaystyle = \frac{1}{2} \int_{-\pi/3}^{\pi/3} (3\cos(\theta))^2 - (1+\cos(\theta))^2 d\theta$    
  $\displaystyle = \int_{0}^{\pi/3} (3\cos(\theta))^2 - (1+\cos(\theta))^2 d\theta$   (even function)    
  $\displaystyle = \int_{0}^{\pi/3} (8 \cos^2(\theta) -2 \cos(\theta) -1) d\theta$    
  $\displaystyle = \int_{0}^{\pi/3} \left(8 \cdot \frac{1}{2}\left(1+\cos(2\theta)\right) -2 \cos(\theta) -1\right) d\theta$    
  $\displaystyle = \int_{0}^{\pi/3} 3 + 4 \cos(2\theta) - 2\cos(\theta) d\theta$    
  $\displaystyle = \Bigl[3\theta + 2 \sin(2\theta) - 2\sin(\theta)\Bigr]_{0}^{\pi/3}$    
  $\displaystyle = \pi + 2\cdot \sqrt{\frac{3}{2}} - 2\sqrt{\frac{3}{2}} - 0 - 2\cdot 0 - 2\cdot 0$    
  $\displaystyle = \pi$    

William Stein 2006-03-15