The Substitution Rule for Definite Integrals

Proposition 2.3.5 (Substitution Rule for Definite Integrals)   We have

$\displaystyle \int_{a}^{b} f(g(x)) g'(x) dx = \int_{g(a)}^{g(b)} f(u) du,
$

assuming that $ u=g(x)$ is a function that is differentiable and whose range is an interval on which $ f$ is continuous.

Proof. If $ F'= f$, then by the chain rule, $ F(g(x))$ is an antiderivative of $ f(g(x)) g'(x)$. Thus

$\displaystyle \int_{a}^{b} f(g(x)) g'(x) dx = \Bigl[ F(g(x))\Bigr]_a^b = F(g(b)) - F(g(a))
= \int_{g(a)}^{g(b)} f(u) du.
$

$ \qedsymbol$

Example 2.3.6  

$\displaystyle \int_{0}^{\sqrt{\pi}} x \cos(x^2) dx$

We let $ u=x^2$, so $ du=2xdx$ and $ xdx = \frac{1}{2} du$ and the integral becomes

$\displaystyle \frac{1}{2} \cdot \int_{(0)^2}^{(\sqrt{\pi})^2} \cos(u) du
= \frac{1}{2}\cdot \left[ \sin(u) \right]_{0}^{\pi} = \frac{1}{2} \cdot (0 - 0) = 0.
$



William Stein 2006-03-15