Periodic Continued Fractions

Definition 5.4 (Periodic Continued Fraction)   A periodic continued fraction is a continued fraction $ [a_0, a_1, \ldots, a_n, \ldots]$ such that

$\displaystyle a_n = a_{n+h}
$

for some fixed positive integer $ h$ and all sufficiently large $ n$ . We call the minimal such $ h$ the period of the continued fraction.

Example 5.4   Consider the periodic continued fraction $ [1,2,1,2,\ldots] = [\overline{1,2}]$ . What does it converge to? We have

$\displaystyle [\overline{1,2}] = 1+\frac{1}{\displaystyle 2+\frac{1}{\displaystyle 1+\frac{1}{\displaystyle 2+ \frac{1}{\displaystyle 1+\cdots}}}},$

so if $ \alpha=[\overline{1,2}]$ then

$\displaystyle \alpha = 1 + \frac{1}{2+\displaystyle \frac{1}{\alpha}}
= 1 + \fr...
...lpha+1}{\alpha}}
= 1 + \frac{\alpha}{2\alpha+1}
= \frac{3\alpha+1}{2\alpha+1}.
$

Thus $ 2\alpha^2 -2\alpha-1 = 0$ , so

$\displaystyle \alpha = \frac{1+\sqrt{3}}{2}.
$

Theorem 5.4 (Periodic Characterization)   An infinite simple continued fraction is periodic if and only if it represents a quadratic irrational.

Proof. ( $ \Longrightarrow$ ) First suppose that

$\displaystyle [a_0, a_1, \ldots, a_n, \overline{a_{n+1},\ldots, a_{n+h}}]$

is a periodic continued fraction. Set $ \alpha=[a_{n+1},a_{n+2}, \ldots]$ . Then

$\displaystyle \alpha = [a_{n+1},\ldots, a_{n+h}, \alpha],
$

so by Proposition 5.1.5

$\displaystyle \alpha = \frac{\alpha p_{n+h} + p_{n+h-1}}{\alpha q_{n+h} + q_{n+h-1}}.
$

Here we use that $ \alpha$ is the last partial quotient. Thus, $ \alpha$ satisfies a quadratic equation with coefficients in  $ \mathbb {Q}$ . Computing as in Example 5.4.4 and rationalizing the denominators, and using that the $ a_i$ are all integers, shows that

$\displaystyle [a_0, a_1, \ldots ]$ $\displaystyle = [a_0, a_1, \ldots, a_n, \alpha]$    
  $\displaystyle = a_0 + \frac{1}{\displaystyle a_1 + \frac{1}{\displaystyle a_2 + \cdots + \frac{1}{\alpha}}}$    

is of the form $ c+d\alpha$ , with $ c,d\in\mathbb{Q}$ , so $ [a_0, a_1, \ldots]$ also satisfies a quadratic polynomial over  $ \mathbb {Q}$ .

The continued fraction procedure applied to the value of an infinite simple continued fraction yields that continued fraction back, so by Proposition 5.2.12, $ \alpha\not\in\mathbb{Q}$ because it is the value of an infinite continued fraction.


( $ \Longleftarrow$ ) Suppose $ \alpha\in\mathbb{R}$ is an irrational number that satisfies a quadratic equation

$\displaystyle a \alpha^2 + b\alpha + c = 0$ (5.4.1)

with $ a, b, c\in\mathbb{Z}$ and $ a\neq 0$ . Let $ [a_0, a_1, \ldots]$ be the continued fraction expansion of $ \alpha$ . For each $ n$ , let

$\displaystyle r_n = [a_n, a_{n+1}, \ldots],
$

so

$\displaystyle \alpha = [a_0, a_1, \ldots, a_{n-1}, r_n].
$

We will prove periodicity by showing that the set of $ r_n$ 's is finite. If we have shown finiteness, then there exists $ n, h>0$ such that $ r_n = r_{n+h}$ , so

$\displaystyle [a_0, \ldots, a_{n-1}, r_n]$ $\displaystyle = [a_0, \ldots, a_{n-1}, a_n, \ldots, a_{n+h-1}, r_{n+h}]$    
  $\displaystyle = [a_0, \ldots, a_{n-1}, a_n, \ldots, a_{n+h-1}, r_{n}]$    
  $\displaystyle = [a_0, \ldots, a_{n-1}, a_n, \ldots, a_{n+h-1}, a_n, \ldots, a_{n+h-1}, r_{n+h}]$    
  $\displaystyle = [a_0, \ldots, a_{n-1}, \overline{a_n, \ldots, a_{n+h-1}}].$    

It remains to show there are only finitely many distinct $ r_n$ . We have

$\displaystyle \alpha = \frac{p_n}{q_n} =
\frac{r_n p_{n-1} + p_{n-2}}{r_n q_{n-1} + q_{n-2}}.
$

Substituting this expression for $ \alpha$ into the quadratic equation (5.4.1), we see that

$\displaystyle A_n r_n^2 + B_n r_n + C_n = 0,$

where

$\displaystyle A_n$ $\displaystyle = a p_{n-1}^2 + b p_{n-1} q_{n-1} + c q_{n-1}^2,$    
$\displaystyle B_n$ $\displaystyle = 2a p_{n-1} p_{n-2} + b(p_{n-1} q_{n-2} + p_{n-2} q_{n-1}) + 2c q_{n-1} q_{n-2},$    and     
$\displaystyle C_n$ $\displaystyle = a p_{n-2}^2 + b p_{n-2} q_{n-2} + c p_{n-2}^2.$    

Note that $ A_n, B_n, C_n\in\mathbb{Z}$ , that $ C_n = A_{n-1}$ , and that

$\displaystyle B_n^2 - 4A_n C_n = (b^2- 4ac)(p_{n-1}q_{n-2} - q_{n-1}p_{n-2})^2 = b^2 - 4ac.
$

Recall from the proof of Theorem 5.2.10 that

$\displaystyle \left\vert \alpha - \frac{p_{n-1}}{q_{n-1}}\right\vert
< \frac{1}{q_n q_{n-1}}.
$

Thus

$\displaystyle \left\vert \alpha q_{n-1} - p_{n-1}\right\vert < \frac{1}{q_n} < \frac{1}{q_{n-1}},
$

so

$\displaystyle p_{n-1} = \alpha q_{n-1} + \frac{\delta}{q_{n-1}}$   with $\displaystyle \vert\delta\vert < 1.
$

Hence

$\displaystyle A_n$ $\displaystyle = a\left(\alpha q_{n-1} + \frac{\delta}{q_{n-1}}\right)^2 +b\left(\alpha q_{n-1} + \frac{\delta}{q_{n-1}}\right)q_{n-1} +c q_{n-1}^2$    
  $\displaystyle = (a\alpha^2 + b\alpha + c)q_{n-1}^2 + 2a\alpha\delta + a\frac{\delta^2}{q_{n-1}^2} + b\delta$    
  $\displaystyle = 2a\alpha\delta + a\frac{\delta^2}{q_{n-1}^2} + b\delta.$    

Thus

$\displaystyle \vert A_n\vert = \left\vert 2a\alpha\delta + a\frac{\delta^2}{q_{n-1}^2} + b\delta\right\vert
< 2\vert a\alpha\vert + \vert a\vert + \vert b\vert.
$

Thus there are only finitely many possibilities for the integer $ A_n$ . Also,

$\displaystyle \vert C_n\vert = \vert A_{n-1}\vert$    and $\displaystyle \quad
\vert B_n\vert = \sqrt{b^2 - 4(ac-A_n C_n)},
$

so there are only finitely many triples $ (A_n, B_n, C_n)$ , and hence only finitely many possibilities for $ r_n$ as $ n$ varies, which completes the proof. (The proof above closely follows [#!hardywright!#, Thm. 177, pg.144-145].) $ \qedsymbol$

William 2007-06-01