Exercises

4..
  1. Calculate the following by hand: $ \left(\frac{3}{97}\right)$ , $ \left(\frac{3}{389}\right)$ , $ \left(\frac{22}{11}\right)$ , and $ \left(\frac{5!}{7}\right)$ .

  2. Let $ G$ be an abelian group and let $ n$ be a positive integer.
    1. Prove that the map $ \varphi :G\to G$ given by $ \varphi (x) = x^n$ is a group homomorphism.
    2. Prove that the subset $ H$ of $ G$ of squares of elements of $ G$ is a subgroup.

  3. Use Theorem 4.1.7 to show that for $ p\geq 5$ prime,

    $\displaystyle \left(\frac{3}{p}\right) = \begin{cases}\hfill 1 & \text{ if }p\equiv 1, 11\pmod{12},\\
-1 & \text{ if }p\equiv 5, 7\pmod{12}. \end{cases}$

  4. (*) Use that $ (\mathbb{Z}/p\mathbb{Z}{})^*$ is cyclic to give a direct proof that $ \left(\frac{-3}{p}\right)=1$ when $ p\equiv 1\pmod{3}$ . (Hint: There is an $ c\in (\mathbb{Z}/p\mathbb{Z}{})^*$ of order $ 3$ . Show that $ (2c+1)^2=-3$ .)

  5. (*) If $ p\equiv 1\pmod{5}$ , show directly that $ \left(\frac{5}{p}\right)=1$ by the method of Exercise 4.4. (Hint: Let $ c\in (\mathbb{Z}/p\mathbb{Z}{})^*$ be an element of order $ 5$ . Show that $ (c+c^4)^2+(c+c^4)-1=0$ , etc.)

  6. (*) Let $ p$ be an odd prime. In this exercise you will prove that $ \left(\frac{2}{p}\right)=1$ if and only if $ p\equiv
\pm 1\pmod{8}$ .
    1. Prove that

      $\displaystyle x = \frac{1-t^2}{1+t^2}, \qquad y = \frac{2t}{1+t^2}
$

      is a parameterization of the set of solutions to $ x^2+y^2\equiv 1\pmod{p}$ , in the sense that the solutions $ (x,y)\in\mathbb{Z}/p\mathbb{Z}{}$ are in bijection with the $ t\in \mathbb{Z}/p\mathbb{Z}{} \cup \{\infty\}$ such that $ 1+t^2\not\equiv 0\pmod{p}$ . Here $ t=\infty$ corresponds to the point $ (-1,0)$ . (Hint: if $ (x_1,y_1)$ is a solution, consider the line $ y=t(x+1)$ through $ (x_1,y_1)$ and $ (-1,0)$ , and solve for $ x_1, y_1$ in terms of $ t$ .)
    2. Prove that the number of solutions to $ x^2+y^2\equiv 1\pmod{p}$ is $ p+1$ if $ p\equiv 3 \pmod{4}$ and $ p-1$ if $ p\equiv 1\pmod{4}$ .
    3. Consider the set $ S$ of pairs $ (a,b)\in (\mathbb{Z}/p\mathbb{Z}{})^*\times (\mathbb{Z}/p\mathbb{Z}{})^*$ such that $ a+b=1$ and $ \left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)=1$ . Prove that $ \char93 S=(p+1-4)/4$ if $ p\equiv 3 \pmod{4}$ and $ \char93 S = (p-1-4)/4$ if $ p\equiv 1\pmod{4}$ . Conclude that $ \char93 S$ is odd if and only if $ p\equiv
\pm 1\pmod{8}$
    4. The map $ \sigma(a,b)=(b,a)$ that swaps coordinates is a bijection of the set $ S$ . It has exactly one fixed point if and only if there is an $ a\in\mathbb{Z}/p\mathbb{Z}{}$ such that $ 2a=1$ and $ \left(\frac{a}{p}\right)=1$ . Also, prove that $ 2a=1$ has a solution $ a\in\mathbb{Z}/p\mathbb{Z}{}$ with $ \left(\frac{a}{p}\right)=1$ if and only if $ \left(\frac{2}{p}\right)=1$ .
    5. Finish by showing that $ \sigma$ has exactly one fixed point if and only if $ \char93 S$ is odd, i.e., if and only if $ p\equiv
\pm 1\pmod{8}$ .
    Remark: The method of proof of this exercise can be generalized to give a proof of the full quadratic reciprocity law.

  7. How many natural numbers $ x < 2^{13}$ satisfy the equation

    $\displaystyle x^2\equiv 5\pmod{2^{13}-1}? $

    You may assume that $ 2^{13}-1$ is prime.

  8. Find the natural number $ x<97$ such that $ x\equiv
4^{48}\pmod{97}$ . Note that $ 97$ is prime.

  9. In this problem we will formulate an analogue of quadratic reciprocity for a symbol like $ \left(\frac{a}{q}\right)$ , but without the restriction that $ q$ be a prime. Suppose $ n$ is a positive integer, which we factor as $ \prod_{i=1}^k p_i^{e_i}$ . We define the Jacobi symbol $ \left(\frac{a}{n}\right)$ as follows:

    $\displaystyle \left(\frac{a}{n}\right) = \prod_{i=1}^k \left(\frac{a}{p_i}\right)^{e_i}.
$

    1. Give an example to show that $ \left(\frac{a}{n}\right)=1$ need not imply that $ a$ is a perfect square modulo $ n$ .
    2. (*) Let $ n$ be odd and $ a$ and $ b$ be integers. Prove that the following holds:
      1. $ \left(\frac{a}{n}\right)\left(\frac{b}{n}\right) = \left(\frac{ab}{n}\right)$ . (Thus $ a\mapsto \left(\frac{a}{n}\right)$ induces a homomorphism from $ (\mathbb{Z}/n\mathbb{Z}{})^*$ to $ \{\pm 1\}$ .)
      2. $ \left(\frac{-1}{n}\right) \equiv n \pmod{4}$ .
      3. $ \left(\frac{2}{n}\right)=1$ if $ n\equiv \pm 1\pmod{8}$ and $ -1$ otherwise.
      4. $ \left(\frac{a}{n}\right) = (-1)^{\frac{a-1}{2} \cdot \frac{n-1}{2}}
\left(\frac{n}{a}\right)$

  10. (*) Prove that for any $ n\in\mathbb{Z}$ the integer $ n^2+n+1$ does not have any divisors of the form $ 6k-1$ .

William 2007-06-01