Multiplicative Functions

Definition 2.2 (Multiplicative Function)   A function $ f:\mathbb{N}\rightarrow \mathbb{Z}$ is multiplicative if, whenever $ m, n\in\mathbb{N}$ and $ \gcd(m,n)=1$ , we have

$\displaystyle f(mn) = f(m)\cdot f(n).
$

Recall from Definition 2.1.17 that the Euler $ \varphi $ -function is

$\displaystyle \varphi (n) = \char93 \{a : 1\leq a \leq n$ and $\displaystyle \gcd(a,n)=1\}.
$

Lemma 2.2   Suppose that $ m, n\in\mathbb{N}$ and $ \gcd(m,n)=1$ . Then the map

$\displaystyle \psi: (\mathbb{Z}/mn\mathbb{Z}{})^* \rightarrow (\mathbb{Z}/m\mathbb{Z}{})^* \times (\mathbb{Z}/n\mathbb{Z}{})^*.$ (2.2.1)

defined by

$\displaystyle \psi(c) = (c$ mod $\displaystyle m,   c$    mod $\displaystyle n)
$

is a bijection.

Proof. We first show that $ \psi$ is injective. If $ \psi(c)=\psi(c')$ , then $ m\mid c-c'$ and $ n\mid c-c'$ , so $ nm\mid c-c'$ because $ \gcd(n,m)=1$ . Thus $ c=c'$ as elements of $ (\mathbb{Z}/mn\mathbb{Z}{})^*$ .

Next we show that $ \psi$ is surjective, i.e., that every element of $ (\mathbb{Z}/m\mathbb{Z}{})^* \times (\mathbb{Z}/n\mathbb{Z}{})^*$ is of the form $ \psi(c)$ for some $ c$ . Given $ a$ and $ b$ with $ \gcd(a,m)=1$ and $ \gcd(b,n)=1$ , Theorem 2.2.2 implies that there exists $ c$ with $ c\equiv a\pmod{m}$ and $ c\equiv b\pmod{n}$ . We may assume that $ 1\leq c\leq nm$ , and since $ \gcd(a,m)=1$ and $ \gcd(b,n)=1$ , we must have $ \gcd(c,nm)=1$ . Thus $ \psi(c)=(a,b)$ . $ \qedsymbol$

Proposition 2.2 (Multiplicativity of $ \varphi $ )   The function $ \varphi $ is multiplicative.

Proof. The map $ \psi$ of Lemma 2.2.6 is a bijection, so the set on the left in (2.2.1) has the same size as the product set on the right in (2.2.1). Thus

$\displaystyle \varphi (mn) = \varphi (m)\cdot \varphi (n).
$

$ \qedsymbol$

The proposition is helpful in computing $ \varphi (n)$ , at least if we assume we can compute the factorization of $ n$ (see Section 3.3.1 for a connection between factoring $ n$ and computing $ \varphi (n)$ ). For example,

$\displaystyle \varphi (12) = \varphi (2^2)\cdot \varphi (3) = 2\cdot 2 = 4.
$

Also, for $ n\geq 1$ , we have

$\displaystyle \varphi (p^n) = p^n - \frac{p^n}{p} = p^n - p^{n-1} = p^{n-1}(p-1),$ (2.2.2)

since $ \varphi (p^n)$ is the number of numbers less than $ p^n$ minus the number of those that are divisible by $ p$ . Thus, e.g.,

$\displaystyle \varphi (389\cdot 11^2) = 388 \cdot (11^2 - 11) = 388\cdot 110 = 42680.
$

William 2007-06-01