next up previous
Next: Linear Congruences Up: Arithmetic Modulo  Previous: Cancellation

Rules for Divisibility

Proposition 2.2   A number $ n\in\mathbb{Z}$ is divisible by $ 3$ if and only if the sum of the digits of $ n$ is divisible by $ 3$.

Proof. Write

$\displaystyle n=a+10b+100c+\cdots.$

Since $ 10\equiv 1\pmod{3}$,

$\displaystyle n = a + 10b + 100c+\cdots \equiv a + b + c+\cdots \pmod{3},
$

from which the proposition follows. $ \qedsymbol$

Similarly, you can find rules for divisibility by $ 5$, $ 9$ and $ 11$. What about divisibility by $ 7$?



William A Stein 2001-09-20