next up previous
Next: Rules for Divisibility Up: Arithmetic Modulo  Previous: Arithmetic Modulo 

Cancellation

Proposition 2.1   If $ \gcd(c,n)=1$ and

$\displaystyle ac\equiv bc\pmod{n}
$

then $ a \equiv b\pmod{n}$.

Proof. By definition

$\displaystyle n \mid ac - bc = (a-b)c.
$

Since $ \gcd(n,c)=1$, it follows that $ n\mid a-b$, so

$\displaystyle a \equiv b\pmod{n},
$

as claimed. $ \qedsymbol$



William A Stein 2001-09-20