next up previous
Next: The first example: N=11, Up: Exploration of a mod pq Previous: Mazur's letter

   
Congruence terminology

In order to work entirely over the integers and determine congruences exactly, we use the following modified notion of congruence. Let N be a positive integer and consider distinct weight 2 newforms f and g whose levels Nf and Ngboth divide N. Denote by $\tilde{A}_f$ the abelian variety generated by the images of Af in J0(N)under the degeneracy maps, and similarly define  $\tilde{A}_g$. We say that f and g are congruent at level N modulo a rational prime p, written $f\equiv g\pmod{p}$, if p divides the order of the finite group $\tilde{A}_f\cap\tilde{A}_g$. Deciding whether or not f and g are congruent can be accomplished by working in the integral homology H1(X0(N),Z)using the algorithm of Section [*].



William A. Stein
1999-08-31