A Related Sequence of Integrals

Now, we define a sequence of real numbers $ T_0, T_1, T_2, \ldots$ by the following integrals:

$\displaystyle T_n=\int_{0}^{1}\frac{t^{n}(t-1)^{n}}{n!}\phantom{1} e^tdt.$

Below, we compute the first two terms of this sequence explicitly. (When we compute $ T_1$ , we are doing the integration by parts $ u=t(t-1)$ , $ dv=e^tdt$ . Since the integral runs from 0 to 1, the boundary condition is 0 when evaluated at each of the endpoints. This vanishing will be helpful when we do the integral in the general case.)

$\displaystyle T_0$ $\displaystyle =\int_{0}^{1}e^tdt=e-1,$    
$\displaystyle T_1$ $\displaystyle =\int_{0}^{1}t(t-1)e^tdt$    
  $\displaystyle =-\int_{0}^{1}((t-1)+t)e^tdt$    
  $\displaystyle =-(t-1)e^t\Bigg\vert _0^{1}-te^t\Bigg\vert _0^{1}+2\int_{0}^{1}e^tdt$    
  $\displaystyle =-1-e+2(e-1)=e-3.$    

The reason that we defined this series now becomes apparent: $ T_0=y_0e-x_0$ and that $ T_1=y_1e-x_1$ . In general, it will be true that $ T_n=y_ne-x_n$ . We will now prove this fact.

It is clear that if the $ T_n$ were to satisfy the same recurrence that the $ x_i$ and $ y_i$ do, in equation (5.3.1), then the above statement holds by induction. (The initial conditions are correct, as needed.) So we simplify $ T_n$ by integrating by parts twice in succession:

$\displaystyle T_n$ $\displaystyle =\int_{0}^{1}\frac{t^{n}(t-1)^{n}}{n!}\phantom{1} e^tdt$    
  $\displaystyle =-\int_{0}^{1}\frac{t^{n-1}(t-1)^{n}+t^{n}(t-1)^{n-1}}{(n-1)!}\phantom{1} e^tdt$    
  $\displaystyle =\int_{0}^{1}\Bigl(\frac{t^{n-2}(t-1)^{n}}{(n-2)!}+n\frac{t^{n-1}(t-1)^{n-1}}{(n-1)!}$    
  $\displaystyle \qquad\qquad\qquad + n\frac{t^{n-1}(t-1)^{n-1}}{(n-1)!}+\frac{t^{n}(t-1)^{n-2}}{(n-2)!}\Bigr)e^tdt$    
  $\displaystyle =2nT_{n-1}+\int_{0}^{1}\frac{t^{n-2}(t-1)^{n-2}}{n-2!}(2t^2-2t+1)\phantom{1} e^tdt$    
  $\displaystyle =2nT_{n-1}+2\int_{0}^{1}\frac{t^{n-1}(t-1)^{n-1}}{n-2!}\phantom{1} e^tdt+\int_{0}^{1}\frac{t^{n-2}(t-1)^{n-2}}{n-2!}\phantom{1} e^tdt$    
  $\displaystyle =2nT_{n-1}+2(n-1)T_{n-1}+T_{n-2}$    
  $\displaystyle =2(2n-1)T_{n-1}+T_{n-2},$    

which is the desired recurrence.

Therefore $ T_n=y_ne-x_n$ . To conclude the proof, we consider the limit as $ n$ approaches infinity:

$\displaystyle \lim_{n \to \infty}\int_{0}^{1}\frac{t^{n}(t-1)^{n}}{n!}\phantom{1} e^tdt=0,
$

by inspection, and therefore

$\displaystyle \lim_{n \to \infty}\frac{x_n}{y_n}=\lim_{n \to \infty}(e-\frac{T_n}{y_n})=e.
$

Therefore, the ratio $ x_n/y_n$ approaches $ e$ , and the continued fraction expansion $ [2,1,2,1,1,4,1,1,\ldots]$ does in fact converge to $ e$ .

William 2007-06-01