Two Integral Sequences

We define the sequences $ x_n=p_{3n}$ , $ y_n=q_{3n}$ . Since the $ 3n$ -convergents will converge to the same real number that the $ n$ -convergents do, $ x_n/y_n$ also converges to the limit of the continued fraction. Each sequence $ \{x_n\}$ , $ \{y_n\}$ will obey the recurrence relation derived in the previous section (where $ z_n$ is a stand-in for $ x_n$ or $ y_n$ ):

$\displaystyle z_n=2(2n-1)z_{n-1}+z_{n-2}$   , for all $\displaystyle n\geq2.$ (5.3.1)

The two sequences can be found in Table 5.1. (The initial conditions $ x_0=1$ , $ x_1=3$ , $ y_0=y_1=1$ are taken straight from the first few convergents of the original continued fraction.) Notice that since we are skipping several convergents at each step, the ratio $ x_n/y_n$ converges to $ e$ very quickly.

Table 5.1: Convergents
$ n$ 0 1 2 3 4 $ \cdots$
$ x_n$ 1 3 19 193 2721 $ \cdots$
$ y_n$ 1 1 7 71 1001 $ \cdots$
$ x_n/y_n$ 1 3 $ 2.714\ldots$ $ 2.71830\ldots$ $ 2.7182817\ldots$ $ \cdots$

William 2007-06-01