ModularForms(11)
Space of modular forms on Gamma_0(11) of weight 2 and dimension 2 over Integer Ring. Space of modular forms on Gamma_0(11) of weight 2 and dimension 2 over Integer Ring. |
ModularForms(Gamma1(2007))
Space of modular forms on Gamma_1(2007) of weight 2 and dimension 150960 over Integer Ring. Space of modular forms on Gamma_1(2007) of weight 2 and dimension 150960 over Integer Ring. |
CuspForms(Gamma1(13),3)
Space of modular forms on Gamma_1(13) of weight 3 and dimension 8 over Integer Ring. Space of modular forms on Gamma_1(13) of weight 3 and dimension 8 over Integer Ring. |
G<a> := DirichletGroup(13,CyclotomicField(12)); CuspForms(a^2,2)
Space of modular forms on Gamma_1(13) with character all conjugates of [a^2], weight 2, and dimension 2 over Integer Ring. Space of modular forms on Gamma_1(13) with character all conjugates of [a^2], weight 2, and dimension 2 over Integer Ring. |
M := ModularForms(Gamma0(11),2); M
Space of modular forms on Gamma_0(11) of weight 2 and dimension 2 over Integer Ring. Space of modular forms on Gamma_0(11) of weight 2 and dimension 2 over Integer Ring. |
M := ModularForms(Gamma1(13),2); M
Space of modular forms on Gamma_1(13) of weight 2 and dimension 13 over Integer Ring. Space of modular forms on Gamma_1(13) of weight 2 and dimension 13 over Integer Ring. |
M := CuspForms(Gamma1(13),2); M
Space of modular forms on Gamma_1(13) of weight 2 and dimension 2 over Integer Ring. Space of modular forms on Gamma_1(13) of weight 2 and dimension 2 over Integer Ring. |
M := ModularForms(Gamma1(1000),2); M
Space of modular forms on Gamma_1(1000) of weight 2 and dimension 31080 over Integer Ring. Space of modular forms on Gamma_1(1000) of weight 2 and dimension 31080 over Integer Ring. |
M := ModularForms(Gamma1(13),2); M
Space of modular forms on Gamma_1(13) of weight 2 and dimension 13 over Integer Ring. Space of modular forms on Gamma_1(13) of weight 2 and dimension 13 over Integer Ring. |
SetPrecision(M,20)
Basis(M)
[ 1 + 17940*q^13 - 68328*q^14 + 58812*q^15 + 68796*q^16 - 58500*q^17 - 161304*q^18 + 87048*q^19 + O(q^20), q + 9920*q^13 - 37946*q^14 + 32946*q^15 + 37922*q^16 - 32517*q^17 - 89682*q^18 + 48510*q^19 + O(q^20), q^2 + 4188*q^13 - 15943*q^14 + 13765*q^15 + 16009*q^16 - 13657*q^17 - 37660*q^18 + 20344*q^19 + O(q^20), q^3 + 862*q^13 - 3125*q^14 + 2496*q^15 + 3342*q^16 - 2658*q^17 - 7321*q^18 + 3876*q^19 + O(q^20), q^4 - 634*q^13 + 2602*q^14 - 2495*q^15 - 2358*q^16 + 2253*q^17 + 6213*q^18 - 3456*q^19 + O(q^20), q^5 - 1021*q^13 + 4015*q^14 - 3631*q^15 - 3862*q^16 + 3454*q^17 + 9530*q^18 - 5214*q^19 + O(q^20), q^6 - 886*q^13 + 3415*q^14 - 2992*q^15 - 3384*q^16 + 2928*q^17 + 8079*q^18 - 4380*q^19 + O(q^20), q^7 - 599*q^13 + 2257*q^14 - 1903*q^15 - 2313*q^16 + 1929*q^17 + 5314*q^18 - 2849*q^19 + O(q^20), q^8 - 340*q^13 + 1241*q^14 - 989*q^15 - 1331*q^16 + 1055*q^17 + 2909*q^18 - 1536*q^19 + O(q^20), q^9 - 165*q^13 + 574*q^14 - 419*q^15 - 655*q^16 + 486*q^17 + 1335*q^18 - 690*q^19 + O(q^20), q^10 - 68*q^13 + 219*q^14 - 139*q^15 - 269*q^16 + 183*q^17 + 502*q^18 - 252*q^19 + O(q^20), q^11 - 23*q^13 + 64*q^14 - 30*q^15 - 89*q^16 + 53*q^17 + 146*q^18 - 70*q^19 + O(q^20), q^12 - 6*q^13 + 12*q^14 - 3*q^15 - 18*q^16 + 9*q^17 + 26*q^18 - 12*q^19 + O(q^20) ] [ 1 + 17940*q^13 - 68328*q^14 + 58812*q^15 + 68796*q^16 - 58500*q^17 - 161304*q^18 + 87048*q^19 + O(q^20), q + 9920*q^13 - 37946*q^14 + 32946*q^15 + 37922*q^16 - 32517*q^17 - 89682*q^18 + 48510*q^19 + O(q^20), q^2 + 4188*q^13 - 15943*q^14 + 13765*q^15 + 16009*q^16 - 13657*q^17 - 37660*q^18 + 20344*q^19 + O(q^20), q^3 + 862*q^13 - 3125*q^14 + 2496*q^15 + 3342*q^16 - 2658*q^17 - 7321*q^18 + 3876*q^19 + O(q^20), q^4 - 634*q^13 + 2602*q^14 - 2495*q^15 - 2358*q^16 + 2253*q^17 + 6213*q^18 - 3456*q^19 + O(q^20), q^5 - 1021*q^13 + 4015*q^14 - 3631*q^15 - 3862*q^16 + 3454*q^17 + 9530*q^18 - 5214*q^19 + O(q^20), q^6 - 886*q^13 + 3415*q^14 - 2992*q^15 - 3384*q^16 + 2928*q^17 + 8079*q^18 - 4380*q^19 + O(q^20), q^7 - 599*q^13 + 2257*q^14 - 1903*q^15 - 2313*q^16 + 1929*q^17 + 5314*q^18 - 2849*q^19 + O(q^20), q^8 - 340*q^13 + 1241*q^14 - 989*q^15 - 1331*q^16 + 1055*q^17 + 2909*q^18 - 1536*q^19 + O(q^20), q^9 - 165*q^13 + 574*q^14 - 419*q^15 - 655*q^16 + 486*q^17 + 1335*q^18 - 690*q^19 + O(q^20), q^10 - 68*q^13 + 219*q^14 - 139*q^15 - 269*q^16 + 183*q^17 + 502*q^18 - 252*q^19 + O(q^20), q^11 - 23*q^13 + 64*q^14 - 30*q^15 - 89*q^16 + 53*q^17 + 146*q^18 - 70*q^19 + O(q^20), q^12 - 6*q^13 + 12*q^14 - 3*q^15 - 18*q^16 + 9*q^17 + 26*q^18 - 12*q^19 + O(q^20) ] |
S := CuspidalSubspace(M);
Basis(S)
[ q - 4*q^3 - q^4 + 3*q^5 + 6*q^6 - 3*q^8 + q^9 - 6*q^10 - 2*q^12 + 2*q^13 + 10*q^16 - 3*q^17 - 3*q^18 - 6*q^19 + O(q^20), q^2 - 2*q^3 - q^4 + 2*q^5 + 2*q^6 - 2*q^8 + q^9 - 3*q^10 + 3*q^13 - 2*q^15 + 5*q^16 - 3*q^17 - 2*q^18 - 2*q^19 + O(q^20) ] [ q - 4*q^3 - q^4 + 3*q^5 + 6*q^6 - 3*q^8 + q^9 - 6*q^10 - 2*q^12 + 2*q^13 + 10*q^16 - 3*q^17 - 3*q^18 - 6*q^19 + O(q^20), q^2 - 2*q^3 - q^4 + 2*q^5 + 2*q^6 - 2*q^8 + q^9 - 3*q^10 + 3*q^13 - 2*q^15 + 5*q^16 - 3*q^17 - 2*q^18 - 2*q^19 + O(q^20) ] |
M := ModularForms(Gamma0(54)); M;
Space of modular forms on Gamma_0(54) of weight 2 and dimension 15 over Integer Ring. Space of modular forms on Gamma_0(54) of weight 2 and dimension 15 over Integer Ring. |
EisensteinSubspace(M)
Space of modular forms on Gamma_0(54) of weight 2 and dimension 11 over Integer Ring. Space of modular forms on Gamma_0(54) of weight 2 and dimension 11 over Integer Ring. |
CuspidalSubspace(M)
Space of modular forms on Gamma_0(54) of weight 2 and dimension 4 over Integer Ring. Space of modular forms on Gamma_0(54) of weight 2 and dimension 4 over Integer Ring. |
NewSubspace(M)
Space of modular forms on Gamma_0(54) of weight 2 and dimension 2 over Integer Ring. Space of modular forms on Gamma_0(54) of weight 2 and dimension 2 over Integer Ring. |
Basis(NewSubspace(M))
[ q + q^4 - q^7 + O(q^8), q^2 - 3*q^5 + O(q^8) ] [ q + q^4 - q^7 + O(q^8), q^2 - 3*q^5 + O(q^8) ] |
M := ModularForms(Gamma0(54)); M;
Space of modular forms on Gamma_0(54) of weight 2 and dimension 15 over Integer Ring. Space of modular forms on Gamma_0(54) of weight 2 and dimension 15 over Integer Ring. |
Newforms(M)
[* [* q - q^2 + q^4 + 3*q^5 - q^7 + O(q^8) *], [* q + q^2 + q^4 - 3*q^5 - q^7 + O(q^8) *]*] [* [* q - q^2 + q^4 + 3*q^5 - q^7 + O(q^8) *], [* q + q^2 + q^4 - 3*q^5 - q^7 + O(q^8) *]*] |
n := Newforms(CuspidalSubspace(ModularForms(43))); n
[* [* q - 2*q^2 - 2*q^3 + 2*q^4 - 4*q^5 + 4*q^6 + O(q^8) *], [* q + a*q^2 - a*q^3 + (-a + 2)*q^5 - 2*q^6 + (a - 2)*q^7 + O(q^8), q + b*q^2 - b*q^3 + (-b + 2)*q^5 - 2*q^6 + (b - 2)*q^7 + O(q^8) *]*] [* [* q - 2*q^2 - 2*q^3 + 2*q^4 - 4*q^5 + 4*q^6 + O(q^8) *], [* q + a*q^2 - a*q^3 + (-a + 2)*q^5 - 2*q^6 + (a - 2)*q^7 + O(q^8), q + b*q^2 - b*q^3 + (-b + 2)*q^5 - 2*q^6 + (b - 2)*q^7 + O(q^8) *]*] |
/* What is a? */ print Parent(n[2][1]); /* so a = sqrt(2) */
Space of modular forms on Gamma_0(43) of weight 2 and dimension 2 over Number Field with defining polynomial x^2 - 2 over the Rational Field. Space of modular forms on Gamma_0(43) of weight 2 and dimension 2 over Number Field with defining polynomial x^2 - 2 over the Rational Field. |
Reductions(n[2][1],3)
[* [* q + $.1^6*q^2 + $.1^2*q^3 + $.1*q^5 + q^6 + $.1^5*q^7 + O(q^8), q + $.1^2*q^2 + $.1^6*q^3 + $.1^3*q^5 + q^6 + $.1^7*q^7 + O(q^8) *]*] [* [* q + $.1^6*q^2 + $.1^2*q^3 + $.1*q^5 + q^6 + $.1^5*q^7 + O(q^8), q + $.1^2*q^2 + $.1^6*q^3 + $.1^3*q^5 + q^6 + $.1^7*q^7 + O(q^8) *]*] |
Reductions(n[2][1],2)
[* [* q + O(q^8) *]*] [* [* q + O(q^8) *]*] |
M := ModularForms(43);
HeckeOperator(M,2)
[ 3 0 6 4] [ 0 0 2 -2] [ 0 1 -1 -1] [ 0 0 -1 -1] [ 3 0 6 4] [ 0 0 2 -2] [ 0 1 -1 -1] [ 0 0 -1 -1] |
M := CuspForms(33);
w := AtkinLehnerOperator(M,3); w
[ 1 0 0] [ 1/3 1/3 -4/3] [ 1/3 -2/3 -1/3] [ 1 0 0] [ 1/3 1/3 -4/3] [ 1/3 -2/3 -1/3] |
Factorization(CharacteristicPolynomial(w))
[ <x - 1, 2>, <x + 1, 1> ] [ <x - 1, 2>, <x + 1, 1> ] |