next up previous
Next: Smoothness and Surjectivity Up: Construction of Visible Elements Previous: Construction of Visible Elements


Tamagawa Numbers

Let $ A$ be an abelian variety over a local field $ K$ with residue class field $ k$, and let $ \mathcal{A}$ be the Néron model of $ A$ over the ring of integers of $ K$. The closed fiber $ \mathcal{A}_{k}$ of $ \mathcal{A}$ need not be connected. Let $ \mathcal{A}^0_k$ denote the geometric component of $ \mathcal{A}$ that contains the identity. The group $ \Phi_{\mathcal{A}} = \mathcal{A}_k /
\mathcal{A}^0_k$ of connected components is a finite group scheme over $ k$. This group scheme is called the component group of $ \mathcal{A}$, and the Tamagawa number of $ A$ is $ c_A = \char93 \Phi_{\mathcal{A}}(k)$.

Now suppose that $ A$ is an abelian variety over a global field $ K$. For every place $ v$ of $ K$, the Tamagawa number of $ A$ at $ v$, denoted $ c_{A,v}$ or just $ c_v$, is the Tamagawa number of $ A_{K_v}$, where $ K_v$ is the completion of $ K$ at $ v$.



William A Stein 2002-02-27