Visible Subgroups of Shafarevich-Tate Groups

Let $ K$ be a number field and $ \iota : A_{/K} \hookrightarrow C_{/K}$ be an embedding of an abelian variety into another abelian variety over $ K$ .

Definition 3.0.1   The visible subgroup of $ \H ^1(K,A)$ relative to $ \iota$ is

$\displaystyle {\mathrm{Vis}}_{C} \H ^1(K,A) = {\mathrm{Ker}}\left(\iota_* : \H ^1(K,A)\to \H ^1(K,C)\right).
$

The visible subgroup of $ {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(K, A)$ relative to the embedding $ \iota$ is

$\displaystyle {\mathrm{Vis}}_{C} {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(K, A)$ $\displaystyle = {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(K, A)\cap {\mathrm{Vis}}_C \H ^1(K,A)$    
  $\displaystyle = {\mathrm{Ker}}\left({\mbox{{\fontencoding{OT2}\fontfamily{wncyr...
...OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(K, C)\right)$    



Let $ Q$ be the abelian variety $ C/\iota(A)$ , which is defined over $ K$ . The long exact sequence of Galois cohomology corresponding to the short exact sequence $ 0\to{} A\to{}C\to{}Q \to{}0$ gives rise to the following exact sequence

$\displaystyle 0 \to A(K) \to C(K) \to Q(K) \to {\mathrm{Vis}}_{C} \H ^1(K,A)\to 0.
$

The last map being surjective means that the cohomology classes of $ {\mathrm{Vis}}_C \H ^1(K,A)$ are images of $ K$ -rational points on $ Q$ , which explains the meaning of the word visible in the definition. The group $ {\mathrm{Vis}}_C \H ^1(K,A)$ is finite since it is torsion and since the Mordell-Weil group $ Q(K)$ is finitely generated.

Remark 3.0.2   If $ A_{/K}$ is an abelian variety and $ c \in \H ^1(K,A)$ is any cohomology class, there exists an abelian variety $ C_{/K}$ and an embedding $ \iota : A \hookrightarrow C$ defined over $ K$ , such that $ c\in{\mathrm{Vis}}_C \H ^1(K,A)$ , i.e., $ c$ is visible in $ C$ (see [AS02, Prop. 1.3]). The $ C$ of [AS02, Prop. 1.3] is the restriction of scalars of $ A_L = A \times_K L$ down to $ K$ , where $ L$ is any finite extension of $ K$ such that $ c$ has trivial image in $ \H ^1(L,A)$ .

William Stein 2006-06-21