next up previous
Next: Statement and Proof of Up: Component Groups of Purely Previous: The Monodromy Pairing on


The Degree of a Symmetric Isogeny

We next relate the degree of the isogeny $ A^{\vee}\rightarrow A$ defined at the end of Section 3 to the order of the cokernel of the induced map on the character groups of tori defined in Section 4.1. Let $ K$ be as in Section 2, and let $ A$ be an abelian variety over $ K$.

Definition 5.1 (Symmetric isogeny)   A symmetric isogeny $ \varphi :A^{\vee}\rightarrow A$ is an isogeny such that the map

$\displaystyle \varphi ^{\vee}:A^{\vee}\rightarrow (A^{\vee})^{\vee}=A$

is equal to $ \varphi $.

If $ J$ and $ A$ are as in Section 3 then the principal polarization $ \theta_J$ of $ J$ is symmetric, so the natural map $ A^{\vee}\rightarrow A$ is a symmetric isogeny.

Lemma 5.2   Suppose that $ A$ is a purely toric abelian variety over $ K$ and that $ \varphi :A^{\vee}\rightarrow A$ is a symmetric isogeny. Let $ \varphi _a:X_A\rightarrow X_{A^{\vee}}$ denote the induced map on character groups. Then

$\displaystyle \deg(\varphi ) = \char93 \coker(\varphi _a)^2.$

Proof. By Corollary 8.7 applied to our isogeny $ \varphi $ (so what we are presently calling $ A^{\vee}$ and $ A$ are respectively called $ A$ and $ B$ in the discussion surrounding Theorem 8.6), we deduce that

$\displaystyle \deg(\varphi) = \char93 \ker(\varphi) =
\char93 \ker(\varphi_t) \cdot \char93 \ker(\varphi^{\vee}_t)$

where $ \varphi _t$ and $ \varphi^{\vee}_t$ are the maps induced by $ \varphi $ and $ \varphi^{\vee}$ on closed fiber tori.

Since the character group $ X_A$ is, by definition, $ \Hom_{\overline{k}}(\mathcal{T}_{\overline{k}},{\mathbf{G}_m}_{\overline{k}})$, where $ \mathcal{T}$ is the toric part of the closed fiber of $ A$, it follows that $ \char93 \ker(\varphi _t) = \char93 \coker(\varphi _a)$. Since $ \varphi =\varphi ^{\vee}$, this proves the lemma. $ \qedsymbol$


next up previous
Next: Statement and Proof of Up: Component Groups of Purely Previous: The Monodromy Pairing on
William A Stein 2001-12-09