next up previous
Next: The Degree of a Up: The Closed Fiber of Previous: The Closed Fiber of


The Monodromy Pairing on the Character Group

Definition 4.2 (Character group of torus)   The character group

$\displaystyle X_A = \Hom_{\overline{k}}(\mathcal{T}_{\overline{k}},{\mathbf{G}_m}_{\overline{k}})$

is a free abelian group of rank $ t$ contravariantly associated to $ A$.

As discussed in [9], if $ A$ is semistable there is a monodromy pairing $ X_A\times X_{A^{\vee}}\rightarrow \mathbf{Z}$ and an exact sequence

$\displaystyle 0 \rightarrow X_{A^{\vee}} \rightarrow \Hom(X_{A},\mathbf{Z}) \rightarrow \Phi_A \rightarrow 0.$

Also, the canonical isomorphism $ (A^{\vee})^{\vee}\cong A$ induces an isomorphism

$\displaystyle X_{A^{\vee}} \times X_{(A^{\vee})^{\vee}}
\cong
X_{A}\times X_{A^{\vee}},
$

which identifies the monodromy pairing associated to $ A^{\vee}$ with that associated to $ A$.

Example 4.3 (Tate curve)   Suppose $ E=\mathbf{G}_m/q^{\mathbf{Z}}$ is a Tate curve over $ \mathbf{Q}_p^{\ur}$. The monodromy pairing on $ X_E=q^{\mathbf{Z}}$ is

$\displaystyle \langle q, q\rangle = \ord_p(q)=-\ord_p(j).$

Thus $ \Phi_E$ is cyclic of order $ -\ord_p(j)$.

Suppose $ J$ is an abelian variety equipped with a symmetric principal polarization. Since $ J$ is self dual via the given symmetric principal polarization, we can view the monodromy pairing on $ J$ as a pairing $ X_J\times X_J \rightarrow \mathbf{Z}$. Because the principal polarization on $ J$ is symmetric the resulting pairing $ X_J\times X_J \rightarrow \mathbf{Z}$ is symmetric, so there is no ambiguity about left versus right definitions of $ X_J \rightarrow \Hom(X_J,\mathbf{Z})$. The above exact sequence then becomes

$\displaystyle 0 \rightarrow X_{J} \rightarrow \Hom(X_J,\mathbf{Z}) \rightarrow \Phi_J \rightarrow 0.$


next up previous
Next: The Degree of a Up: The Closed Fiber of Previous: The Closed Fiber of
William A Stein 2001-12-09