Proof of Theorem 3.5

We continue to use the notation of Section 4.1.

First suppose that $ \ell \mid N$ and $ S_2({{\bf {Z}}_{(\ell)}})[I]$ is not stable under the action of $ W_\ell$ . Relative differentials and Néron models are functorial, so % latex2html id marker 8750
$ H^0(A_{{{\bf {Z}}_{(\ell)}}},\Omega^1_{A/{{{\bf {Z}}_{(\ell)}}}})$ is $ W_{\ell}$ -stable. Thus the map % latex2html id marker 8754
$ H^0(A_{{{\bf {Z}}_{(\ell)}}},\Omega^1_{A/{{{\bf {Z}}_{(\ell)}}}}) \to S_2({{\bf {Z}}_{(\ell)}})[I]$ is not surjective. But $ c_A$ is the order of the cokernel, so $ \ell \mid c_A$ .

Next we prove the other implication, namely that if $ \ell \mid c_A$ , then $ \ell \mid N$ and $ S_2({{\bf {Z}}_{(\ell)}})[I]$ is not stable under $ W_\ell$ . We will prove this by proving the contrapositive, i.e., that if either $ \ell\nmid N$ or $ S_2({{\bf {Z}}_{(\ell)}})[I]$ is stable under $ W_\ell$ , then $ \ell \nmid c_A$ .

We now follow the discussion preceding Lemma 4.2, taking % latex2html id marker 8776
$ G = H^0(A_{{{\bf {Z}}_{(\ell)}}},\Omega^1_{A/{{{\bf {Z}}_{(\ell)}}}})$ . To show that $ \ell \nmid {c_{\scriptscriptstyle{A}}}$ , we have to show that $ {c_{\scriptscriptstyle{A}}}$ is a unit in  $ {{{\bf {Z}}_{(\ell)}}}$ . For this, it suffices to check that in diagram (2), the image of % latex2html id marker 8784
$ H^0(A_{{{\bf {Z}}_{(\ell)}}},\Omega^1_{A/{{{\bf {Z}}_{(\ell)}}}})$ in $ {{{\bf {Z}}_{(\ell)}}}[[q]]$ under $ \Phi$ is saturated, since the image of $ S_2(\Gamma_0(N);{{{\bf {Z}}_{(\ell)}}})[I]$ under $ F$ -exp is saturated in $ {{{\bf {Z}}_{(\ell)}}}[[q]]$ . In view of Lemma 4.2, it suffices to show that the map

% latex2html id marker 8796
$\displaystyle H^0({A_{{{\bf {Z}}_{(\ell)}}}},\Omeg...
...{Z}}_{(\ell)}}}},\Omega^1_{{J/{{{\bf {Z}}_{(\ell)}}}}})\otimes \mathbf{F}_\ell $

is injective.

Since $ A$ is an optimal quotient, $ \ell\neq 2$ , and $ J$ has good or semistable reduction at $ \ell$ , [Maz78, Cor 1.1] yields an exact sequence

% latex2html id marker 8806
$\displaystyle 0 \rightarrow H^0(A_{{{\bf {Z}}_{(\e...
...H^0(B_{{{\bf {Z}}_{(\ell)}}},\Omega^1_{B/{{{\bf {Z}}_{(\ell)}}}}) \rightarrow 0$

where $ B = \ker(J\to A)$ . Since % latex2html id marker 8810
$ H^0(B_{{{\bf {Z}}_{(\ell)}}},\Omega^1_{B/{{{\bf {Z}}_{(\ell)}}}})$ is torsion free, by Lemma 4.1 the map % latex2html id marker 8812
$ H^0({A_{{{\bf {Z}}_{(\ell)}}}},\Omega^1_{{A/{{{\b...
...{Z}}_{(\ell)}}}},\Omega^1_{{J/{{{\bf {Z}}_{(\ell)}}}}})\otimes \mathbf{F}_\ell $ is injective, as was to be shown.

William Stein 2006-06-25