The Field of $ p$-adic Numbers

The ring $ \mathbf{Q}_{10}$ of $ 10$-adic numbers is isomorphic to $ \mathbf{Q}_{\hspace{.2ex}2}\times \mathbf{Q}_{\hspace{.2ex}5}$ (see Exercise 58), so it is not a field. For example, the element $ \ldots8212890625$ corresponding to $ (1,0)$ under this isomorphism has no inverse. (To compute $ n$ digits of $ (1,0)$ use the Chinese remainder theorem to find a number that is $ 1$ modulo $ 2^{n}$ and 0 modulo $ 5^n$.)

If $ p$ is prime then $ \mathbf{Q}_p$ is a field (see Exercise 57). Since $ p\neq 10$ it is a little more complicated to write $ p$-adic numbers down. People typically write $ p$-adic numbers in the form

$\displaystyle \frac{a_{-\!d}}{p^{d}} + \cdots + \frac{a_{-1}}{p} + a_0 + a_1 p + a_2 p^2 + a_3 p^3 + \cdots
$

where $ 0\leq a_i < p$ for each $ i$.



William Stein 2004-05-06