William Stein's homepage
Next: About this document ...
Up: No Title
Previous: Genus one curves
-
- 1
-
A. Agashé, On invisible elements of the Tate-Shafarevich group,
C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 5, 369-374.
- 2
-
A. Agashé and W.A. Stein, Visibility of
Shafarevich-Tate groups of modular abelian varieties, in preparation
(1999).
- 3
-
E. Artin, Über eine neue Art von L-Reihen, Abh. Math. Sem. Univ. Hamburg 3 (1923), 89-108.
- 4
-
B.J. Birch, Elliptic curves over
Q:
A progress report, 1969 Number Theory Institute (Proc. Sympos. Pure
Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969), Amer. Math.
Soc., Providence, R.I., 1971, pp. 396-400.
- 5
-
S. Bloch and K. Kato, L-functions and Tamagawa
numbers of motives, The Grothendieck Festschrift, Vol. I,
Birkhäuser Boston, Boston, MA, 1990, pp. 333-400.
- 6
-
C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of
elliptic curves over
Q,
in preparation.
- 7
-
K. Buzzard, M. Dickinson, N. Shepherd-Barron, and R. Taylor, On
icosahedral Artin representations,
available at http://www.math.harvard.edu/~rtaylor/.
- 8
-
K. Buzzard and R. Taylor, Companion forms and weight one
forms, Annals of Math. (1999).
- 9
-
J.E. Cremona, Algorithms for modular elliptic curves, second
ed., Cambridge University Press, Cambridge, 1997.
- 10
-
J.E. Cremona and B. Mazur, Visualizing elements in the
Shafarevich-Tate group, Proceedings of the Arizona Winter School
(1998).
- 11
-
N.D. Elkies, Elliptic and modular curves over finite fields
and related computational issues, Computational perspectives on number
theory (Chicago, IL, 1995), Amer. Math. Soc., Providence, RI, 1998,
pp. 21-76.
- 12
-
V.A. Kolyvagin, On the structure of Shafarevich-Tate
groups, Algebraic geometry (Chicago, IL, 1989), Springer, Berlin, 1991,
pp. 94-121.
- 13
-
V.A. Kolyvagin and D.Y. Logachev, Finiteness of
over totally real fields, Math. USSR Izvestiya 39
(1992), no. 1, 829-853.
- 14
-
S. Lang and J. Tate, Principal homogeneous spaces over abelian
varieties, Amer. J. Math. 80 (1958), 659-684.
- 15
-
B. Mazur, Rational points of abelian varieties with values in towers of
number fields, Invent. Math. 18 (1972), 183-266.
- 16
-
to3em, Modular curves and the Eisenstein ideal, Inst. Hautes
Études Sci. Publ. Math. (1977), no. 47, 33-186 (1978).
- 17
-
to3em, Rational isogenies of prime degree (with an appendix by D.
Goldfeld), Invent. Math. 44 (1978), no. 2, 129-162.
- 18
-
to3em, Visualizing elements of order three in the Shafarevich-Tate
group, preprint (1999).
- 19
-
L. Merel, Sur la nature non-cyclotomique des points d'ordre fini des
courbes elliptiques, preprint (1999).
- 20
-
J.-F. Mestre and J. Oesterlé, Courbes de Weil semi-stables de
discriminant une puissance m-ième, J. Reine Angew. Math.
400 (1989), 173-184.
- 21
-
K.A. Ribet, On modular representations of
arising from modular forms, Invent.
Math. 100 (1990), no. 2, 431-476.
- 22
-
to3em, Raising the levels of modular representations, Séminaire de
Théorie des Nombres, Paris 1987-88, Birkhäuser Boston, Boston, MA, 1990,
pp. 259-271.
- 23
-
A.J. Scholl, An introduction to Kato's Euler systems,
Galois Representations in Arithmetic Algebraic Geometry, Cambridge University
Press, 1998, pp. 379-460.
- 24
-
J-P. Serre, Sur les représentations modulaires de degré 2
de
, Duke Math. J.
54 (1987), no. 1, 179-230.
- 25
-
W.A. Stein, Component groups of optimal quotients of
Jacobians, preprint (1999).
- 26
-
R. Taylor and A.J. Wiles, Ring-theoretic properties of
certain Hecke algebras, Ann. of Math. (2) 141 (1995),
no. 3, 553-572.
- 27
-
J. Tunnell, Artin's conjecture for representations of octahedral type,
Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, 173-175.
- 28
-
A.J. Wiles, Modular elliptic curves and Fermat's
last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443-551.
William A. Stein
1999-12-01