The Root Test

Since $ e$ and $ \ln$ are inverses, we have $ x = e^{\ln(x)}$. This implies the very useful fact that

$\displaystyle x^a = e^{\ln(x^a)} = e^{a\ln(x)}.
$

As a sample application, notice that for any nonzero $ c$,

$\displaystyle \lim_{n\to\infty} c^{\frac{1}{n}} =
\lim_{n\to\infty} e^{ \frac{1}{n} \log(c)} = e^0 = 1.
$

Similarly,

$\displaystyle \lim_{n\to\infty} n^{\frac{1}{n}} =
\lim_{n\to\infty} e^{\frac{1}{n} \log(n)} = e^0 = 1,
$

where we've used that $ \lim_{n\to\infty} \frac{\log(n)}{n} = 0$, which we could prove using L'Hopital's rule.

Theorem 6.4.10 (Root Test)   Consider the sum $ \sum_{n=1}^{\oo } a_n$.
  1. If $ \lim_{n\to\infty} \vert a_n\vert^{\frac{1}{n}} = L < 1$, then $ \sum_{n=1}^{\infty} a_n
$ convergest absolutely.
  2. If $ \lim_{n\to\infty} \vert a_n\vert^{\frac{1}{n}} = L > 1$, then $ \sum_{n=1}^{\infty} a_n
$ diverges.
  3. If $ L=1$, then we may conclude nothing from this!

Proof. We apply the comparison test (Theorem 6.4.1). First suppose $ \lim_{n\to\infty} \vert a_n\vert^{\frac{1}{n}} = L < 1$. Then there is a $ N$ such that for $ n\geq N$ we have $ \vert a_n\vert^{\frac{1}{n}} < k < 1$. Thus for such $ n$ we have $ \vert a_n\vert < k^n < 1$. The geometric series $ \sum_{i=N}^{\infty} k^i$ converges, so $ \sum_{i=N}^{\oo } \vert a_n\vert$ also does, by Theorem 6.4.1. If $ \vert a_n\vert^{\frac{1}{n}} > 1$ for $ n\geq N$, then we see that $ \sum_{i=N}^{\oo } \vert a_n\vert$ diverges by comparing with $ \sum_{i=N}^{\infty} 1$. $ \qedsymbol$

Example 6.4.11   Let's apply the root test to

$\displaystyle \sum_{n=1}^{\infty} a r^{n-1} = \frac{a}{r} \sum_{n=1}^{\infty} r^n.
$

We have

$\displaystyle \lim_{n\to\infty} \vert r^n\vert^{\frac{1}{n}} = \vert r\vert.
$

Thus the root test tells us exactly what we already know about convergence of the geometry series (except when $ \vert r\vert=1$).

Example 6.4.12   The sum $ \sum_{n=1}^{\infty} \left(\frac{n^2+1}{2n^2+1}\right)^n$ is a candidate for the root test. We have

$\displaystyle \lim_{n\to \infty} \left\vert\left(\frac{n^2+1}{2n^2+1}\right)^n\...
...}
= \lim_{n\to \infty} \frac{1+\frac{1}{n^2}}{2+\frac{1}{n^2}} = \frac{1}{2}.
$

Thus the series converges.

Example 6.4.13   The sum $ \sum_{n=1}^{\infty} \left(\frac{2n^2+1}{n^2+1}\right)^n$ is a candidate for the root test. We have

$\displaystyle \lim_{n\to \infty} \left\vert\left(\frac{2n^2+1}{n^2+1}\right)^n\...
...2+1}{n^2+1}
= \lim_{n\to \infty} \frac{2+\frac{1}{n^2}}{1+\frac{1}{n^2}} = 2,
$

hence the series diverges!

Example 6.4.14   Consider $ \sum_{n=1}^{\infty} \frac{1}{n}$. We have

$\displaystyle \lim_{n\to\oo } \left\vert \frac{1}{n} \right\vert^{\frac{1}{n}} = 1,
$

so we conclude nothing!

Example 6.4.15   Consider $ \sum_{n=1}^{\infty} \frac{n^n}{3\cdot (27^n)}$. To apply the root test, we compute

$\displaystyle \lim_{n\to\infty} \left\vert \frac{n^n}{3\cdot (27^n)} \right\ver...
...to\infty} \left(\frac{1}{3}\right)^{\frac{1}{n}} \cdot \frac{n}{27}
= +\infty.
$

Again, the limit diverges, as in Example 6.4.8.

William Stein 2006-03-15