Estimating the Sum of a Series

Suppose $ \sum a_n$ is a convergent sequence of positive integers. Let

$\displaystyle R_m = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{m} a_n = \sum_{n=m+1}^{\infty} a_m
$

which is the error if you approximate $ \sum a_n$ using the first $ n$ terms. From Theorem 6.3.2 we get the following.

Proposition 6.3.8 (Remainder Bound)   Suppose $ f$ is a continuous, positive, decreasing function on $ [m,\infty)$ and $ \sum a_n$ is convergent. Then

$\displaystyle \int_{m+1}^{\infty} f(x) dx \leq R_m
\leq \int_{m}^{\infty} f(x) dx.
$

Proof. In Theorem 6.3.2 set $ k=m+1$. That gives

$\displaystyle \int_{m+1}^{\infty} f(x) dx     \leq    
\sum_{n=m+1}^{\infty} a_n     \leq    
a_{m+1} + \int_{m+1}^{\infty} f(x) dx.
$

But

$\displaystyle a_{m+1} + \int_{m+1}^{\infty} f(x) dx
\leq
\int_{m}^{\infty} f(x) dx
$

since $ f$ is decreasing and $ f(m+1)=a_{m+1}$. $ \qedsymbol$

Example 6.3.9   Estimate $ \zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}$ using the first $ 10$ terms of the series. We have

$\displaystyle \sum_{n=1}^{10} = \frac{19164113947}{16003008000} = 1.197531985674193\ldots
$

The proposition above with $ m=10$ tells us that

$\displaystyle 0.00413223140495867\ldots
=
\int_{11}^{\infty} \frac{1}{x^3}dx \l...
...{10}^{\infty} \frac{1}{x^3}dx = \frac{1}{2\cdot 10^2} = \frac{1}{200} = 0.005.
$

In fact,

$\displaystyle \zeta(3) = 1.202056903159594285399738161511449990\ldots
$

and we hvae

$\displaystyle \zeta(3) - \sum_{n=1}^{10} = 0.0045249174854010\ldots,
$

so the integral error bound was really good in this case.

Example 6.3.10   Determine if $ \sum_{n=1}^{\infty} \frac{2006}{117n^2 + 41n + 3}$ convergers or diverges. Answer: It converges, since

$\displaystyle \frac{2006}{117n^2 + 41n + 3}
\leq \frac{2006}{117n^2} = \frac{2006}{117} \cdot \frac{1}{n^2},
$

and $ \sum \frac{1}{n^2}$ converges.

William Stein 2006-03-15