 
 
 
 
 
   
William Stein
Date: Math 124  HARVARD UNIVERSITY
 HARVARD UNIVERSITY  Fall 2001
 Fall 2001
(1 point) Why do you think that quadratic reciprocity is
so cool?
 ,
, 
 ,
,
 , and
, and 
 .
.
 
 
 for any
 for any  .
.
 is a prime, then
there is a primitive root modulo
 is a prime, then
there is a primitive root modulo  .
.
 is cyclic to give a direct proof
that
 is cyclic to give a direct proof
that 
 when
 when 
 . [Hint: There is an
. [Hint: There is an 
 of
order
 of
order  .  Show that
.  Show that 
 .]
.]
 , show directly that
, show directly that 
 by the method of 
Exercise 5. [Hint: Let
 by the method of 
Exercise 5. [Hint: Let 
 be an element of
order
 be an element of
order  .  Show that
.  Show that 
 , etc.]
, etc.]
 is
 is 
 ?
?
 such that
such that  is a primitive root
modulo
 is a primitive root
modulo  is asymptotic to
 is asymptotic to  where
 where  is the number of
primes
 is the number of
primes  and
 and  is a fixed constant called Artin's constant.
Using a computer, make an educated guess as to what
 is a fixed constant called Artin's constant.
Using a computer, make an educated guess as to what  should be, to
a few decimal places of accuracy.  Explain your reasoning.  (Note:
Don't try to prove that your guess is correct.)
 should be, to
a few decimal places of accuracy.  Explain your reasoning.  (Note:
Don't try to prove that your guess is correct.)  
 
 
 
 
 
 
   
 Next: About this document ...
William A Stein
2001-12-10