Existence of Primitive Roots

Recall from Section 2.1.2 that the order of an element $ x$ in a finite group is the smallest $ m\geq 1$ such that $ x^m=1$ . In this section, we prove that $ (\mathbb{Z}/p\mathbb{Z}{})^*$ is cyclic by using the results of Section 2.5.1 to produce an element of $ (\mathbb{Z}/p\mathbb{Z}{})^*$ of order $ d$ for each prime power divisor $ d$ of $ p-1$ , and then we multiply these together to obtain an element of order $ p-1$ .

We will use the following lemma to assemble elements of each order dividing $ p-1$ to produce an element of order $ p-1$ .

Lemma 2.5   Suppose $ a,b\in(\mathbb{Z}/n\mathbb{Z}{})^*$ have orders $ r$ and $ s$ , respectively, and that $ \gcd(r,s)=1$ . Then $ ab$ has order $ rs$ .

Proof. This is a general fact about commuting elements of any group; our proof only uses that $ ab=ba$ and nothing special about $ (\mathbb{Z}/n\mathbb{Z}{})^*$ . Since

$\displaystyle (ab)^{rs} = a^{rs}b^{rs}=1,
$

the order of $ ab$ is a divisor of $ rs$ . Write this divisor as $ r_1 s_1$ where $ r_1\mid r$ and $ s_1\mid s$ . Raise both sides of the equation

$\displaystyle a^{r_1 s_1}b^{r_1 s_1} = (ab)^{r_1 s_1} = 1
$

to the power $ r_2 = r/r_1$ to obtain

$\displaystyle a^{r_1 r_2 s_1} b^{r_1 r_2 s_1} = 1.
$

Since $ a^{r_1 r_2 s_1} = (a^{r_1 r_2})^{s_1} = 1$ , we have

$\displaystyle b^{r_1 r_2 s_1} = 1,
$

so $ s\mid r_1 r_2 s_1$ . Since $ \gcd(s,r_1 r_2)=\gcd(s,r) = 1$ , it follows that $ s=s_1$ . Similarly $ r=r_1$ , so the order of $ ab$ is $ rs$ . $ \qedsymbol$

Theorem 2.5 (Primitive Roots)   There is a primitive root modulo any prime $ p$ . In particular, the group $ (\mathbb{Z}/p\mathbb{Z}{})^*$ is cyclic.

Proof. The theorem is true if $ p=2$ , since $ 1$ is a primitive root, so we may assume $ p>2$ . Write $ p-1$ as a product of distinct prime powers $ q_i^{n_i}$ :

$\displaystyle p-1 = q_1^{n_1}q_2^{n_2}\cdots q_r^{n_r}.
$

By Proposition 2.5.5, the polynomial $ x^{q_i^{n_i}}-1$ has exactly $ q_i^{n_i}$ roots, and the polynomial $ x^{q_i^{n_i-1}}-1$ has exactly $ q_i^{n_i-1}$ roots. There are $ q_i^{n_i} - q_i^{n_i-1}=q_i^{n_i-1}(q_i-1)$ elements $ a\in\mathbb{Z}/p\mathbb{Z}{}$ such that $ a^{q_i^{n_i}}=1$ but $ a^{q_i^{n_i-1}}\neq 1$ ; each of these elements has order $ q_i^{n_i}$ . Thus for each $ i=1,\ldots, r$ , we can choose an $ a_i$ of order $ q_i^{n_i}$ . Then, using Lemma 2.5.7 repeatedly, we see that

$\displaystyle a = a_1 a_2 \cdots a_r
$

has order $ q_1^{n_1}\cdots q_r^{n_r} = p-1$ , so $ a$ is a primitive root modulo $ p$ . $ \qedsymbol$

Example 2.5   We illustrate the proof of Theorem 2.5.8 when $ p=13$ . We have

$\displaystyle p-1 = 12 = 2^2\cdot 3.
$

The polynomial $ x^4 - 1$ has roots $ \{1,5,8,12\}$ and $ x^2-1$ has roots $ \{1,12\}$ , so we may take $ a_1=5$ . The polynomial $ x^3-1$ has roots $ \{1,3,9\}$ , and we set $ a_2=3$ . Then $ a=5\cdot 3=15\equiv 2$ is a primitive root. To verify this, note that the successive powers of  $ 2\pmod{13}$ are

$\displaystyle 2,  4,  8,  3,  6,  12,  11,  9,  5,  10,  7,  1.
$

Example 2.5   Theorem 2.5.8 is false if, e.g., $ p$ is replaced by a power of $ 2$ bigger than $ 4$ . For example, the four elements of $ (\mathbb{Z}/8\mathbb{Z}{})^*$ each have order dividing $ 2$ , but $ \varphi (8)=4$ .

Theorem 2.5 (Primitive Roots mod $ p^n$ )   Let $ p^n$ be a power of an odd prime. Then there is a primitive root modulo $ p^n$ .

The proof is left as Exercise 2.28.

Proposition 2.5 (Number of primitive roots)   If there is a primitive root modulo $ n$ , then there are exactly $ \varphi (\varphi (n))$ primitive roots modulo $ n$ .

Proof. The primitive roots modulo $ n$ are the generators of $ (\mathbb{Z}/n\mathbb{Z}{})^*$ , which by assumption is cyclic of order  $ \varphi (n)$ . Thus they are in bijection with the generators of any cyclic group of order $ \varphi (n)$ . In particular, the number of primitive roots modulo $ n$ is the same as the number of elements of $ \mathbb{Z}/\varphi (n)\mathbb{Z}{}$ with additive order $ \varphi (n)$ . An element of $ \mathbb{Z}/\varphi (n)\mathbb{Z}{}$ has additive order $ \varphi (n)$ if and only if it is coprime to $ \varphi (n)$ . There are $ \varphi (\varphi (n))$ such elements, as claimed. $ \qedsymbol$

Example 2.5   For example, there are $ \varphi (\varphi (17)) = \varphi (16)=2^4-2^3=8$ primitive roots mod $ 17$ , namely $ 3, 5, 6, 7, 10, 11, 12, 14$ . The $ \varphi (\varphi (9)) = \varphi (6) = 2$ primitive roots modulo $ 9$ are $ 2$ and $ 5$ . There are no primitive roots modulo $ 8$ , even though $ \varphi (\varphi (8)) = \varphi (4) = 2>0$ .

William 2007-06-01