next up previous
Next: Mordell's Theorem Up: Lecture 26: The Elliptic Previous: The Group Law is

An Example Over a Finite Field

Let $ E$ be the elliptic curve $ y^2 = x^3 + 3x + 3$ over the finite field

$\displaystyle K=\mathbb{Z}/5\mathbb{Z}= \{0, 1, 2, 3, 4\}.
$

First, we find all points on $ E$ using PARI:
? for(x=0,4, for(y=0,4, if((y^2-(x^3+3*x+3))%5==0, print1([x,y],"  "))))
[3, 2]  [3, 3]  [4, 2]  [4, 3]
Thus $ E(K) = \left\{\O , (3,2), (3,3), (4,2), (4,3)\right\},
$ so $ E(K)$ must be a cyclic abelian group of order $ 5$. Let's verify that $ E(K)$ is generated by $ (3,2)$.
? e = ellinit([0,0,0,Mod(3,5),Mod(3,5)])
? ?ellpow    \\ type ?5 for a complete list of elliptic-curve functions
ellpow(e,x,n): n times the point x on elliptic curve e (n in Z).
? x = [3,2];
? for(n=1,5,print(n,"*[3,2] =  ",lift(ellpow(e,x,n))))
1*[3,2] =  [3, 2]
2*[3,2] =  [4, 3]
3*[3,2] =  [4, 2]
4*[3,2] =  [3, 3]
5*[3,2] =  [0]



William A Stein 2001-11-16