next up previous
Next: Literature Up: Discriminants of Hecke Algebras Previous: The Discriminant Valuation

Motivation and Applications

Let $ p$ be a prime and suppose that $ \Gamma=\Gamma_0(p)$ or $ \Gamma_1(p)$. The quantity $ d_k(\Gamma)$ is of interest because it measures mod $ p$ congruences between eigenforms in $ S_k(\Gamma)$.

Proposition 3.1   Suppose that $ d_k(\Gamma)$ is finite. Then the discriminant valuation $ d_k(\Gamma)$ is nonzero if and only if there is a mod-$ p$ congruence between two Hecke eigenforms in $ S_k(\Gamma)$ (note that the two congruent eigenforms might be Galois conjugate).

Proof. It follows from Proposition 2.2 that $ d_k(\Gamma)>0$ if and only if $ \mathbb{T}\otimes \overline{\mathbb{F}}_p$ is not separable. The Artinian ring $ \mathbb{T}\otimes \overline{\mathbb{F}}_p$ is not separable if and only if the number of ring homomorphisms $ \mathbb{T}\otimes \overline{\mathbb{F}}_p\rightarrow \overline{\mathbb{F}}_p$ is less than

$\displaystyle \dim_{\overline{\mathbb{F}}_p} \mathbb{T}\otimes \overline{\mathbb{F}}_p= \dim_\mathbb{C}S_k(\Gamma).
$

Since $ d_k(\Gamma)$ is finite, the number of ring homomorphisms $ \mathbb{T}\otimes \overline{\mathbb{Q}}_p\rightarrow \overline{\mathbb{Q}}_p$ equals $ \dim_\mathbb{C}S_k(\Gamma)$. Using the standard bijection between congruences and normalized eigenforms, we see that $ \mathbb{T}\otimes \overline{\mathbb{F}}_p$ is not separable if and only if there is a mod-$ p$ congruence between two eigenforms. $ \qedsymbol$

Example 3.2   If $ \Gamma=\Gamma_0(389)$ and $ k=2$, then $ \dim_\mathbb{C}S_2(\Gamma) = 32$. Let $ f$ be the characteristic polynomial of $ T_2$. One can check that $ f$ is square free and $ 389$ exactly divides the discriminant of $ f$, so $ T_2$ generated $ \mathbb{T}\otimes \mathbb{Z}_{389}$ as a ring. (If it generated a subring of $ \mathbb{T}\otimes \mathbb{Z}_{389}$ of finite index, then the discriminant of $ f$ would be divisible by $ 389^2$.)

Modulo $ 389$ the polynomial $ f$ is congruent to

\begin{displaymath}\begin{array}{l}
(x+2)(x+56)(x+135)(x+158)(x+175)^2(x+315)(x...
...\\
213x^5 + 248x^4 + 108x^3 + 283x^2 + x + 101)
\end{array}\end{displaymath}

The factor $ (x+175)^2$ indicates that $ \mathbb{T}\otimes \overline{\mathbb{F}}_{389}$ is not separable since the image of $ T_2+175$ is nilpotent (its square is 0). There are $ 32$ eigenforms over  $ \mathbb{Q}_2$ but only $ 31$ mod-$ 389$ eigenforms, so there must be a congruence. Let $ F$ be the $ 389$-adic newform whose $ a_2$ term is a root of

$\displaystyle x^2 + (-39 + 190\cdot 389 + 96\cdot 389^2 +\cdots) x + (-106 + 43\cdot 389 +
19\cdot 389^2 + \cdots).
$

Then the congruence is between $ F$ and its $ \Gal(\overline{\mathbb{Q}}_{389}/\mathbb{Q}_{389})$-conjugate.

Example 3.3   The discriminant of the Hecke algebra $ \mathbb{T}$ associated to $ S_2(\Gamma_0(389))$ is

$\displaystyle 2^{53} \!\cdot\! 3^{4} \!\cdot\! 5^{6} \!\cdot\! 31^{2} \!\cdot\!...
...ot\! 389 \!\cdot\! 3881 \!\cdot\! 215517113148241 \!\cdot\! 477439237737571441
$

I computed this using the following algorithm, which was suggested by Hendrik Lenstra. Using the Sturm bound I found a $ b$ such that $ T_1,\ldots,T_b$ generate $ \mathbb{T}$ as a $ \mathbb{Z}$-module. I then found a subset $ B$ of the $ T_i$ that form a $ \mathbb{Q}$-basis for $ \mathbb{T}\otimes _\mathbb{Z}\mathbb{Q}$. Next, viewing $ \mathbb{T}$ as a ring of matrices acting on $ \mathbb{Q}^{32}$, I found a random vector $ v\in\mathbb{Q}^{32}$ such that the set of vectors $ C=\{T(v) : T \in B\}$ is linearly independent. Then I wrote each of $ T_1(v),\ldots, T_b(v)$ as $ \mathbb{Q}$-linear combinations of the elements of $ C$. Next I found a $ \mathbb{Z}$-basis $ D$ for the $ \mathbb{Z}$-span of these $ \mathbb{Q}$-linear combinations of elements of $ C$. Tracing everything back, I find the trace pairing on the elements of $ D$, and deduce the discriminant by computing the determinant of the trace pairing matrix. The most difficult step is computing $ D$ from $ T_1(v),\ldots, T_b(v)$ expressed in terms of $ C$, and this explains why we embed $ \mathbb{T}$ in $ \mathbb{Q}^{32}$ instead of viewing the elements of $ \mathbb{T}$ as vectors in $ \mathbb{Q}^{32^2}$. This whole computation takes one second on an Athlon 2000 processor.



Subsections
next up previous
Next: Literature Up: Discriminants of Hecke Algebras Previous: The Discriminant Valuation
William A Stein 2002-09-30