Bradshaw - Dokchitser - 041309

Dokchitser's Algorithm

consider a motivic L-function

Assume it satisfied $L(s) = \epsilon L^*(w - s)$ where

$$L^*(s) = \left(\frac{\sqrt{N}}{\pi^{d/2}}\right)^s \prod_{i=1}^d \Gamma\left(\frac{s+\lambda_i}{2}\right) L(s)$$

where

$$L(s) = \sum \frac{a_n}{n^s}$$

converges for Re(s) >> 0.

Assume L* is meromorphic, and has finitely many poles.

EXAMPLES

$$w \; d \quad \lambda_i \qquad \qquad N \qquad \quad \epsilon \qquad \quad ext{pole}$$

$$\zeta(s)$$
 1 1 0 1 1 1

$$\label{eq:continuous} $\operatorname{zeta}_K(s) \quad 1 \quad [K:\mathbf{Q}] \quad 0,...,0,1,...,1 \quad (r_1 \text{ 0's and } 2r_2 \text{ 1's}) \quad |D_F| \quad 1 \qquad 1$$

$$L(E,s) \hspace{0.5cm} 2 \hspace{0.5cm} 2 \hspace{0.5cm} 0,1 \hspace{0.5cm} N \hspace{0.5cm} \backslash pm \hspace{0.1cm} 1$$

Why? Can use to compute root number, conductor, etc.

Discussion about poles: The algorithm takes as input the finitely many poles.

Mellin Transforms

Given $f(t):R^+ o R$, the mellin transform of f(t) is

$$g(s) = \int_0^\infty f(t)t^s \frac{dt}{t}.$$

The inverse Mellin transform is

$$f(t) = \int_{c-i\infty}^{c+i\infty} g(s)t^{-s}ds$$

for any c with Re(c) > poles of <math>g.

Let
$$\gamma(s) = \prod_{j=1}^d \Gamma\left(\frac{s+\lambda_j}{2}\right)$$
.

Define $\phi(t)$ to be the inverse Mellin transform of $\gamma(s)$, which is

$$\gamma(s) = \int_0^\infty \phi(t) t^s \frac{dt}{t}$$

Let

1 of 3

$$\Theta(t) = \sum_{n=1}^{\infty} a_n \phi(\frac{nt}{A})$$

where $A = \pi^{d/2}$.

We have

$$\int_0^\infty \theta(t) t^s \frac{dt}{t} = \int_0^\infty \sum_{n=1}^\infty a_n \phi(\frac{nt}{A}) t^s \frac{dt}{t} = \sum_{n=1}^\infty a_n \int_0^\infty \phi(t) (\frac{At}{n})^s \frac{dt}{t} = \sum_{n=1}^\infty A^s \frac{a_n}{n^s} \int_0^\infty \phi(t) t^s \frac{dt}{t} = L^*(s).$$

We have

$$\theta(\frac{1}{t}) = \int_{c-i\infty}^{c+i\infty} L^*(s)t^s ds = t^{-w} \int_{c-i\infty}^{c+i\infty} \epsilon L^*(w-s)t^{s-w} ds = t^w \epsilon \int_{w-c+i\infty}^{w-c-i\infty} L^*(s)t^{-s} ds = t^w \epsilon \theta(t) - \sum_i r_j t^{P_j} ds = t^w \epsilon$$

where we sum over the poles p_j with residues r_j .

Now we compute $L^*(s)$ in terms of θ .

$$L^*(s) = \int_0^\infty \theta(t) t^s \frac{dt}{t} = \left(\int_0^1 + \int_1^\infty\right) \theta(t) t^s \frac{dt}{t} = \int_1^\infty \theta(t) t^s \frac{dt}{t} + \int_1^\infty \theta(\frac{1}{t}) t^{-s} \frac{dt}{t} = \int_1^\infty \theta(t) t^s \frac{dt}{t} + \int_1^\infty t^w \epsilon \theta(t) - \epsilon \sum_t r_j t^{P_j} t^{-s} \frac{dt}{t} = \sum_t \theta(t) t^s \frac{dt}{t} + \int_t^\infty \theta(t)$$

Let

$$G_s(t) = t^{-s} \int_t^{\infty} \phi(x) x^s \frac{dx}{x}$$

Then with some more similar manipulation we get

$$\int_1^\infty \theta(t)t^s \frac{dt}{t} = \dots = \sum_{n=1}^\infty A^s a_n G_s(n/A).$$

So computing L boils down to computing these G-functions.

Computing $G_s(t)$:

Note that $G_s(-)$ is a function of s and the λ_i .

Meier G-function: $\phi(t)=2G_{0,d}^{d,0}(t^2;;\frac{\lambda_j}{2}).$

Using $s\Gamma(s) = \Gamma(s+1)$ we get horrendous recurrence involving 5-level nested sums, etc. Can do explicitly.

For small t, we have $G_s(t) = rac{\gamma(s)}{t^s} - F_s(t)$, where $F_s(t) \in \mathbf{C}[\log(t)][[t]]$.

Problem with this approach: $F_s(t)$ behaves like the Taylor series of e^{-t} . Horrible cancellation. Have to do things to very high precision. Bad.

show(exp(-x).taylor(x,0,15))

Better idea to compute $G_s(t)$?

$$G_s(t^{d/2}) \sim rac{(2\pi)^{(d-1)/2}}{\sqrt{d}} e^{-dt} t^{k-1} \sum_{n=1}^\infty \mu_n(s) t^{-n}$$

and

$$k = (1 - d + \sum \lambda_j)/2.$$

Example. For an elliptic curve E, we have $\lambda_1=0, \lambda_2=1$, and $\mu_n(s)=\prod_{a=1}^n \frac{(s-a)}{2}...$ so in fact the above formula for G_s is a divergent series!!!

The above is an *asymptotic expansion*, so instead of comparing as $n \to \infty$, compare as $x \to \infty$ for fixed n:

$$F(x) \sim \sum_{n=1}^{\infty} a_n x^{-n}$$

if and only if for each n,

$$\lim_{x o\infty}\left(F(x)-\sum_{n=1}^N a_nx^{-n}
ight)x^N=0$$

Given $\sum M_N x^n$ as a <u>formal</u> power series, consider the continued fraction $b_0 + \frac{x^{k_0}}{b_1 + \frac{x^{k_1}}{b_1 + \frac{x^{k_2}}{b_1 + \frac{x^{$

Let $c_n(x)$ be the truncated continued fraction. Then $c_n(x)$ "converges" "quickly" "to $\Psi_s(t)$ ".