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Abstract. The main theme of my final project is about the relationship be-
tween orders and the rings of integers in number fields. These arise from the

question whether a ring of integers of a certain number field is monogenic

and by an example given in class this is related to the ’nonessential discrimi-
nant divisor’ of such number field. If a ring of integer is monogenic, then the

nonessential discriminant divisor is necessarily 1. Historically, the nonessen-

tial discriminant divisor has been considered to be determined by the prime
decompositions, when each nonessential prime discriminant divisor does not

ramifies. The final project is divided into three parts:

(1) Dealing with some special cases when the field extension L/Q is not
Galois, and of degree [L : Q] = m = kq + 1, and its normal closure M/Q
has degree qm, where q is a prime number and m is square free. Since
L/Q is not Galois, M is not abelian. The prime decompositions in these

field extensions are examined and a criterion for a prime to divide the

nonessential discriminant divisor is given. These results generalize the
conclusion in Cohen’s book and a recent paper.

(2) A geometrical view of generator theory of ring of integers. In this part,

algebraic geometry is used to interpret how many generators the ring of
integers of a certain number field needs as Z-algebra. The factorization

of the minimal polynomial of the field in the polynomial ring over p-

adic integers Zp[x] is examined to determine whether the corresponding
affine scheme is locally integrally closed over the fibre of Spec(Z) at (p).

A criterion to determine which element is integral over the localization

of an order. This section contains graphics.
(3) In the third part, regular discriminant divisor is defined and it is conjec-

tured, but not proved that non-regular discriminant divisors are finite.

The relationship between regular discriminant divisor and non-essential
discriminant divisor is considered and a criterion on the number of gen-
erators of rings of integers as Z-algebra is given related to the number
of locally non-regular discriminant divisor. However, work done in this

article is not as strong as the cited work of P.A.B.Pleasant, whose work

determined exactly the number of generators by prime decomposition in
most cases.

1

In this section we are going to look at some special cases of Galois extensions
which are not cyclic. We will first introduce some fact about prime ideal decom-
position in these extensions and determine the common index divisor of certain
subfields of these extensions.
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Let L/K be a normal extension of number fields with Galois group G = Gal(L/K)
and degree n = [L : K], let p be a prime ideal of K, and let

pZL =
∏

1≤i≤g

Pei
i with f(Pei

i /p) = fi.

Then by some basic fact of Galois extension, we have the following lemma [Coh3]:

Lemma 1.1. Let L/K be assumed as above, then the ideals Pi are permuted
transitively by the Galois group G: in other word, for every pair (i, j) there exists
a (not necessarily unique) σi,j ∈ G such that σ(Pi) = Pj . Moreover, all the ei and
fj are equal resp. to e and f , such that efg = n.

Proof. [Coh3] �

In this case we let P be any of those Pi lying over p.

Definition 1.1. (1) The decomposition group D(P/p) is the subgroup of G
defined by

D(P/p) = {σ ∈ G|σ(P) = P}.
(2) The k-th ramification group Gk(P/p) is the subgroup of G defined by

Gk(P/p) = {σ ∈ G|∀x ∈ ZL, σ(x) ≡ x mod Pk+1}.

(3) The inertia group is the group I(P/p) = G0(P/p), and the decomposition
group D(P/p) is denoted as G−1(P/p).

We have the following character of non-cyclic extensions [Coh3]:

Proposition 1.2. If L/K = Q is a normal extension of number fields which is not
cyclic, then no prime ideal of K is inert in L/K.

Proof. Suppose σ ∈ D(P/p), then by definition σ(P) = P and σ fixes Z pointwise.
Thus σ induces a Z/p-algebra isomorphism s(σ) from OL/P to itself. Which means
that s(σ) ∈ Gal((OL/P)/(Z/p)). Note that the field extension (OL/P)/(Z/p) is
an extension of finite fields, hence is cyclic. Note that s above defined is a surjec-
tive homomorphism form D(P/p) to Gal((OL/P)/(Z/p)) whose kernel is equal to
I(P/p). Therefore D(P/p)/I(P/p) is isomorphic to Gal((OL/P)/(Z/p)).
Now that if p is inert in L/K and suppose P is the lying over prime ideal, we im-
mediately obtain that D(P/p) = Gal(L/K) and I(P/p) = {1}. Hence Gal(L/K)
is isomorphic to Gal((OL/P)/(Z/p)), which is cyclic. Contradiction. Therefore no
prime ideal of K is inert in a non-cyclic normal extension.

�

We give the following characterization of prime ideal decomposition of the field
extension of the following properties:

Suppose M/Q is a normal extension with Galois group G = Gal(M/Q), where
a prime number q ‖ |G|. Write |G| = qm, where q - m and m is square-free. Now
consider the case when

1. the q-Sylow subgroup of G is not normal, which implies that m = kq+1 for
some integer k. Also note that any two different q-Sylow subgroups have
trivial intersection. And

2. There exist a normal cyclic subgroup H of G which have index q.
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Under these hypotheses and by Galois theory, we deduce that there exist a unique
subfield of M/Q, say K/Q, of degree q, with Gal(M/K) isomorphic to the cyclic
group of order m. Also Gal(M/L) is isomorphic to the cyclic group of order q
and L/Q not normal. Furthermore, we have the following statement of prime ideal
decomposition:

Lemma 1.3. Keep the above hypotheses and notation, p a prime ideal of Q
(1) The prime ideal p cannot be inert in L/Q.
(2) If pOM = P1 . . .Pq with prime ideals Pi of M of degree m over p, then p

is inert in L/Q.
(3) If pOM = P1P2 · · ·Pm with prime ideals Pi of M of degree q over p, then

pOL = PL,0PL,1 · · ·PL,k,

where PL,0 has degree 1 over p and PLi
has degree q over p for 1 ≤ i ≤ k.

(4) If p is totally split in M/Q, it is totally split in L/K.
(5) We cannot have pOM = Pq with a prime ideal P of M of degree m over p.
(6) If pOM = Pq

1P
q
2 · · ·Pq

m with prime ideals Pi of M of degree 1 over p, then

pOL = PL,0P
q
L,1 · · ·P

q
L,k,

where the PL,i have degree 1 over p.
(7) If pOM = Pm with a prime ideal P of M of degree q over p, then p is

totally ramified over L/Q.
(8) If pOM = Pm

1 . . .Pm
q with prime ideal Pi of M of degree 1 over p, then p

is totally ramified in L/Q.
(9) If p is totally ramified in M/Q, in other words if pOM = Pqm

M , then p is
totally ramified in L/Q and in addition p | m.

Proof. Note first that in the case when m is a prime number, if g is the number of
prime ideals of M lying above p and if P is one of them, we have e(P/p)f(P/p)g =
[M : Q] = qm, hence under this case the possibilities listed above are exhaustive.

(1) This follows immediately follows from Proposition 1.2 since G is not a cyclic
group.

(2) By transitivity of residual degrees and since m is square free, therefore
m = p1 · · · pr for different primes pi. For each pi, if pi | f(PM/p) for some
prime ideal PM of N , then by the transitivity of residual degrees, we have
pi | f((PM ∩ L)/p). Since pi’s are different and hence coprime, then we
have m | f((PM ∩ L)/p); in other words, p is inert in L/Q.

(3) Since the Pi are prime ideals of degree q over p, it follows that G−1(Pi/p)
is a subgroup of order q in G. Since the Galois group of M/Q permutes
transitively the Pi and since the Galois group acts by conjugation on the
decomposition groups, it follow that when 1 ≤ i ≤ m the decomposition
groups G−1(Pi/p) span the m subgroups of order q of G. Thus, exactly one
of these group, say G−1(Pi/p), will be equal to Gal(M/Q), and the other
will have a trivial intersection. Since the residual degrees are transitive it
follows that the prime ideal of L below Pi will be of degree 1 over p and
prime ideals of L below the Pi for 1 ≤ i ≤ k will be of degree q.

(4) Trivial.
(5) If pZ = P2, then G−1(P/p) ∼= G and G0(P/p) ∼= Z/qZ which is impossible

since no subgroup of G isomorphic to Z/qZ is normal in G.
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(6) The proof of (6) is identical to that of (3), replacing the decomposition
groups G−1 by the inertia group G0 and residual degree by the ramification
indices.

(7) and (8) Same proof as for (2) replacing residual degrees by ramification indices.
(9) The first statement of (9) is proved as (7) and (8). The second has been

proved during the proof of Proposition 10.1.25 [Coh3].

�

It is well known that if q1 and q2 are two prime numbers such that q1 < q2 and
q2 = 1 mod q1, then there exist a unique non-abelian group Gq1q2 of order q1q2

up to group isomorphism. In this group there exist a unique Sylow-q2 subgroup
which is automatically normal in view of Sylow theorem. Furthermore, there are
q2 conjugate Sylow-q1 subgroups, with pairwise intersection the trivial group.

Suppose L = Q(α) is a algebraic number field of degree q2, α an algebraic integer
in L and f(x) ∈ Z[α] irreducible with degree q2. Suppose M is the splitting field of
f(x) and Gal(f(x)) ' Gq1q2(=G if not not making confusion). Then we obtain a
field extension Q ⊂ L ⊂ M , such that M/Q is Galois of degree q1q2 and L/Q is not
Galois, of degree q2. Note that by Galois Theory, in M/Q there is a unique subfield
K of degree q1 because there is a unique subgroup of index q1 in G, i.e., the unique
Sylow-q2 subgroup, which is normal and hence K/Q is a Galois extension. (Here
q2 plays the role as m in the preceding lemma and this is the case when we noted
in the first of the proof that all the (9) cases are exhaustive.)

The following theorem generalizes the main conclusion of [Spearman2].

Theorem 1.4. Let f(x), L = Q(α) ⊂ M be assumed above. Let K be the unique
subfield of M of degree q1. If p is a prime satisfying

p 6= q1, p ≤ k =
q2 − 1

q1
, p | d(K),

then

pOL = p0p
q1
1 · · · pq1

m

for distinct prime ideals p0, p1, · · · , pm of OL, and p is a common index divisor of
L.



REM. ON NONESSENTIAL DISC. DIV. OF RINGS OF INTEGERS AND Z-ALG. GENERATORS5

Proof. Since p | d(K), we have pOK = ℘q1 for some prime ideal ℘ of OK , i.e., p
splits in K. Suppose that ℘ is inert in M/K. This contradicts Lemma 1.3 (2).
Hence ℘ is not inert in M/K. Now we prove that ℘ can neither totally ramifies in
M/K. If ℘ = Qq

2 for some prime ideal Q in M , then (p) = ℘q1 = Qq1q2 in M . Here
by Lemma 1.3 (9), we have p | q2. Since both p and q2 are primes, we have p = q2,
which is contradict to the assumption p ≤ k = q2−1

q1
. Therefore ℘ does not totally

ramify in M . As M is normal of prime degree q2 over K, we have

℘OM = P1 · · ·Pq2

with Pi distinct prime ideals in OM . Thus,

pOM = Pq1
1 · · ·Pq1

q2
.

Now we use Lemma 1.3 (6) to determine the prime decomposition of p over OL.
We have

pOL = p0p
q1
1 · · · pq1

m

.
Then let g(x) be any defining polynomial of L, so that deg(g(x)) = q2. Let β be
a root of g(x) such that Q(β) = L. Suppose p - ind(β). The inertial degree f = 1
in the extension M/Q, hence in L/Q, so that all the irreducible factors of g(x)
modulo p are linear. Then g(x) has at most p irreducible factors modulo p. Hence,
by Dedekind’s Theorem, p factors into at most p different prime ideals in L. Then
we have (q2 − 1)/q1 ≤ p + 1, which is contradict to our condition. Hence p | ind(β)
for all defining polynomial g(x), which means that p is a common index divisor of
L. �
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2. A Geometric Point of View

Suppose K/Q is a number field with [K : Q] = n. Let OK be the ring of integer
of K. Since OK is a finitely generated Z-algebra, then by the universality of the
polynomial algebra over Z, there is a positive integer m, such that there exist a
surjective Z-algebra homomorphism:

α : Z[x1, · · · , xm] → OK , xi 7→ βi

where βi are the generators for OK as Z-algebra.
Suppose A = kerα is a finitely generated ideal of Z[x1, · · · , xm] for Z[x1, · · · , xm]

is a Noetherian domain and by Hilbert basis theorem. For each prime p, there is a
canonical ring homomorphism

πp : Z[x1, · · · , xm] → Fp[x1, · · · , xm],
acting by modulo the ideal generated by p.

Proposition 2.1 (Prime Ideal Decomposition). Keep the above assumption. We
have

(1) πp(A) equals a product of prime ideals in Fp[x1, · · · , xm].
(2) If

πp(A) = Pe1
1 · · ·Peg

g

as ideals Fp[x1, · · · , xm], where Pi are distinct prime ideals of Fp[x1, · · · , xm],
then in the ring of integers OK , the prime ideal decomposition of pOK ap-
pears in the form

pOK = pe1
1 · · · peg

g ,

where pi are distinct prime ideals of OK . Moreover pi = pOK +α◦π−1
p (Pi).

Explicitly saying, if π−1
p (Pi) = (fi,1, · · · , fi,s) where fi,j ∈ Z[x1, · · · , xm],

then
pi = (p, fi,1(β1, · · · , βm), · · · , fi,s(β1, · · · , βm)),

where βi = α(xi).

Proof. This proof is similar to that of Dedekind’s Theorem.

First note that there exist a ring homomorphism

β : Fp[x1, . . . , xm] → OK/pOK xi 7→ βi mod p

such that the following diagram commutes:

Z[x1, . . . , xm]

α

��

mod p
// Fp[x1, . . . , xm]

αp

��

OK
mod p

// OK/pOK

Then note that OK/pOK is finite, in particular, an Artinian ring. Therefore its
zero ideal (0) is a product of all the maximal ideals, i.e.,

(0) = me1
1 · · ·mes

s
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Viewing in Fp[x1, . . . , xm], we have πp(A) = Pe1
1 · · ·Pes

s . Therefore in Z[x1, . . . , xm],
we have

(pZ[x1, . . . , xm] + A) =
(
pZ[x1, . . . , xm] + π−1

p (P1)
)e1 · · ·

(
pZ[x1, . . . , xm] + π−1

p (Ps)
)es

.

Mapping through α, we get

pOK =
(
pOK + α ◦ π−1

p (P1)
)e1 · · ·

(
pOK + α ◦ π−1

p (Ps)
)es

.

Now since the diagram is commutative with each ring homomorphism surjective
and each Pi is a prime ideal of Fp[x1, . . . , xm], therefore pOK + α ◦ π−1

p (Pi) is a
prime ideal of OK . The explicit statements follows from Hilbert basis theorem:
since OK is Noetherian, therefore each ideal is finitely generated. �

The Dedekind’s Theorem is the reduced case of this lemma when m = 1. This
case is much easier because Fp[x] is a principal ideal domain and each ideal can be
explicitly calculated through one polynomial.

Remark 2.2. It is obvious that if [K : Q] = n, then there exist a surjective Z-
algebra homomorphism π : Z[x1, . . . , xn] → OK , via π(xi) = ωi, where ω1, . . . , ωn

can be taken to be an integral basis of K, which means that any ring of integers
of degree n can be generated by n elements as a Z-algebra. But it is not easy to
determine the least number of generators.

Remark 2.3. Note that fi,j here is a maximal ideal of Z[x1, · · · , xm], a Noetherian
domain of Krull dimension m + 1. However, there is no guarantee that each max-
imal ideal fi,j of Z[x1, · · · , xm] is generated by m elements. However, by Krull’s
Hauptidealsatz, each minimal prime ideal is generated by one element.

Remark 2.4. From a geometric point of view, α gives an imbedding of Spec(OK)
into Spec(Z[x1, · · · , xm]), the m-dimensional affine space over Z. There exists a
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minimal m such that there does not exist any surjective Z-algebra homomorphism
Z[x1, · · · , xl] → OK for any l ≤ m − 1. That is to say, in a geometrical way, the
’regular curve’ OK cannot be properly embedded into an affine space of dimension
less than m. However, also note that this case is much different form algebraic
geometry over an algebraically close field, in which every curve has an embedding
into P3.

Then we are going to see how to determine the dimension of this embedding.
First, we construct the terminologies and the scheme for Z-algebras.

Suppose Z[x1, . . . , xm] is the polynomial algebra over Z with m generators.
Since there exist a surjective Z-algebra homomorphism π∗ : Z[x1, . . . , xm] → Z
via modulo the ideal (x1, · · · , xm), thus π∗ induces a surjective morphism π : Am

Z =
Spec(Z[x1, . . . , xm]) → Spec(Z). The fibres of this morphism are the schemes Am

Fp

if over (p), and Am
Q over (0).

Now look at the fibre over (p), i.e., the scheme Am
Fp

. The points in Am
Fp

=
Spec(Fp[x1, . . . , xm]) have different properties. Suppose m is a maximal ideal of
Fp[x1, . . . , xm], corresponding to a single point P , then the residue field Fp[x1, . . . , xm]/m
is a finite extension of Fp, suppose of degree d. Then we call d the degree of P ,
writen as degp(P ) = d.

Lemma 2.5. Suppose σ : Am
Fp

→ Am
Fp

is an isomorphism of schemes. Then
degp(P ) = degp(σ(P )) for each P ∈ Am

Fp
.

Proof. Since σ is an isomorphism, then it induces a Fp-algebra isomorphism from
Fp[x1, . . . , xm] to itself. Since it preserves Fp, therefore it preserves the fiber over
(p). Suppose P = m, then we have the following two commutative diagram:
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0 // m

σ

��

// Fp[x1, . . . , xm]

σ

��

// Fp[x1, . . . , xm]/m

σ

��

// 0

0 // σ(m) // σ(Fp[x1, . . . , xm]) // σ(Fp[x1, . . . , xm]/m) // 0
By Snake lemma, we get an injective Fp-algebra homomorphism δ : Fp[x1, . . . , xm]/m →

σ(Fp[x1, . . . , xm]/m); since σ is isomorphism, then we have another injective Fp-
algebra homomorphism δ′ induced from σ−1 which is actually the inverse of δ.
Therefore, two residue fields are isomorphic, in particular, have the same degree
over Fp. �

Lemma 2.6. [Śliwa1] Let K/Q be a finite extension with K = Q(α), where α is
integral over Z, with minimal polynomial f(x). Suppose p is a rational prime not
ramified in K and let p = p1 · · · pr, where pi are prime ideals of OK . Then f(x)
factorizes over Zp as f(x) = f1(x) · · · fr(x), where fi(x) are square-free in Zp[x],
and deg fi = f(pi), the residue field degree of pi.

Proof. [Śliwa1] �

Proposition 2.7. Suppose K = Q(α) is a number field, with ring of integers OK .
Without loss of generality, suppose α ∈ OK and let f(x) ∈ Z[x] be the minimal
polynomial of α, which is irreducible in Z[x]. Also assume that viewing f as a
polynomial in Zp[x]. Since Zp is a UFD and so is Zp[x], we may write f as the
product of the powers of g distinct irreducible polynomials, i.e.,

f(x) = (f1(x))e1 . . . (fg(x))eg in Zp[x],

with fi(x) irreducible in Zp[x]. Denote with Nf (p, d) the sum of the number of
degree d irreducible polynomials appears in the decomposition of f in Zp[x]/pZp[x].
If m is a positive integer such that Nf (p, d) is greater than the number of irre-
ducible polynomials of degree d in Fp[x1, . . . , xm], then OK cannot be generated by
m elements as a Z-algebra.

Proof. Let d be the degree such that Nf (p, d) is greater than the number of irre-
ducible polynomials of degree d in Fp[x1, . . . , xm]. Then we count the number of
prime ideals in OK which are lying over p and have degree d.
First, we claim that if OK were generated by m elements as a Z-algebra, then the
number of prime ideals lying over p and having degree d does not exceed the num-
ber of degree d irreducible polynomials in Fp[x1, . . . , xm]. To see this, remember
that OK is generated by m elements if and only if there exist a surjective Z-algebra
homomorphism

σ∗ : Z[x1, . . . , xm] → OK ,

and this map induces a morphism between affine spaces:

σ : Spec(OK) ↪→ Am
Z .

Note that the number of points of degree d at the fibre over (p) of Am
Z is just the

number of irreducible polynomials in Fp[x1, . . . , xm] and each prime ideal lying over
p and of degree d corresponds to a point of degree d at the fibre over (p), hence
the number of these prime ideals is less than or equal to the number of degree d
irreducible polynomials in Fp[x1, . . . , xm].
Then we look locally at (p). Since OK is integrally closed, Spec(OK) has no singular
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points. Hence by each point P ∈ Am
Z at the fibre of p, there is at most one irre-

ducible components of Spec(OK) passing through. Since OK is integrally closed,
hence Spec(OK) is a normal curve, the number of different irreducible components
at the points of degree d in the stalks at fibre over p equals Nf (p, d), then the
number of degree d at the fibre over p is greater than or equal to Nf (p, d).
Now by our hypothesis, Nf (p, d) is greater than the number of irreducible polynomi-
als of degree d in Fp[x1, . . . , xm]. This is contradict to what we deduced above. �

Example 2.8. Consider the ’canonical’ example K = Q(α), where the minimal
polynomial α is f(x) = x3 + x2 − 2x + 8. Take the order O = Z[α] ∼= Z[x]/(f(x)).
One verifies easily that (2)O = (2, α)2(2, α + 1). Viewing C = Spec(O) as a one-
dimensional sub-scheme of A1

Z then C = Spec(O) meets the fibre over (2) at two
point: (2, x) and (2, x + 1), where (2, x) is a double point. To examine this double
point, we look at the tangent space of this point. Denote by m the maximal ideal
(2, x). Note that m/m2 has four elements, namely {0, 2, x, 2+x} and obviously m/m2

is a F2-module, also note that 2 ·x = 0 ∈ m/m2, we conclude that m/m2 ∼= F2⊕F2.
This shows that C = Spec(O) is not regular at (2, x), hence O is not integrally
closed. In contrast, at (2, x + 1), the tangent space is {0, 2} ∼= F2, therefore its
tangent space is of the same dimension of C, i.e., C is regular at (2, x + 1).

Since f(x) = x(x − 1)(x − 2) in Z/4Z, therefore f(x) = f1f2f3 in Z2 for some
distinct irreducible polynomials fi, 1 ≤ i ≤ 3 in Z2[x]. Since each fi must have
degree 1, then each point corresponding to (2, fi(x)) in A1

Z has degree 1. This is
contradict to the fact that there are only two points of degree 1 at the fibre over 2
in A1

Z. Therefore OK is not monogenic.

We claim that in order to normalize a one-dimensional irreducible scheme, it
suffices to normalize it locally at each singularities. To see this, suppose Spec(O) is
a one-dimensional irreducible scheme over Spec(Z), with singular points m1, . . . ,mk.
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Since both SpecO and its normalization Spec Õ are irreducible schemes, then we
have

O =
⋂

m∈mSpec(O)

Om =

( ⋂
m reg.

Om

)
∩

 ⋂
m sing.

Om


and

Õ =
⋂

m∈mSpec Õ

Õm =

 ⋂
m∩O reg.

Õm

 ∩

 ⋂
m∩O sing.

Õm

 .

Note that at regular points, the localizations of O and Õ are isomorphic, i.e.,
there exist a 1-1 fibre-preserving and degree -preserving 1-1 correspondence between
the regular points of Spec(O) and its lifting in Spec(Õ). Then we get⋂

m reg.

Om
∼=

⋂
m∩O reg.

Õm

as O-module. This means that the difference between O and Õ lies only over those
m’s which are singularities.

Suppose m0 is a singular point, we wish to determine the normalization of Om0 .
m0 is singular means that Om0 is not integrally closed, therefore there exist some
element f, g ∈ Om0 such that f/g is integral over Om0 but not f/g 6∈ Om0 . The
advantage for local consideration realizes in that there is a unique maximal ideal in
Om0 , namely m0Om0 and this ideal is not principal. For if it were, thenOm0 becomes
a UFD and hence integrally closed. Hence we may suppose m0 = (p = f0, . . . , fl−1)
for l elements in m, and by Nakayama’s lemma, we may take these fi’s to be sent to
the basis of m0/m2

0 as a O/m0-module, in particular, we have l = dimO/m0 m0/m2
0.

Suppose Sp is the maximal multiplicative set disjoint with pO. We have the
following lemma to help us determine which element are integral locally over Om0 :

Lemma 2.9. Suppose β ∈ S−1
p O satisfies that β/p ∈ S̃−1

p O, the integral closure of

S−1
p O, there exist an integer N such that βN+j ∈

(
pS−1

p O
)j for all j ≤ 1. On the

other hand, if β ∈ S−1
p satisfies that βN+j ∈

(
pS−1

p O
)j for all j ≤ 1, then β/p is

integral over S−1
p O.

Proof. First suppose that β/p is integral over S−1
p O, then β/p satisfies a monic

polynomial over S−1
p O, namely(

β

p

)n

+ an−1

(
β

p

)n−1

+ · · ·+ a0 = 0,

which is means that

βn = −
(
an−1β

n−1p + · · ·+ a0p
n
)

= −p
(
βn−1 + · · ·+ a0p

n−1
)
.

From this we deduce that βn ∈ pS−1
p O, which means that this proposition holds

for N = n − 1. Now suppose that this proposition holds for 1 ≤ k ≤ j, i.e.,
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βN+k ∈
(
pS−1

p O
)k, for each 1 ≤ k ≤ j, then multiple the previous equation by βj

to make the left hand side to the n + j-th power, we get

βn+j = −
(
an−1β

n−1+jp + · · ·+ a0p
n−1βj

)
.

Note that each term in the right hand side lies in
(
pS−1

p O
)j+1, hence βN+j+1 ∈(

pS−1
p O

)j+1. By induction this holds for every positive integer j.

For the other implication, note that if M is the module generated by β/p, . . . , βN/p
over S−1

p O, then βNM ⊆ M , which means that βN/p is integral over S−1
p O. How-

ever, since β/p is integral over S−1
p O

[
βN/p

]
, therefore β/p is integral over S−1

p O.

To conclude, β/p is integral over S−1
p O if and only if there exist an integer N

such that βN+j ∈
(
pS−1

p O
)j for all j ≤ 1. �

3. relationship between generators and common index divisors

Definition 3.1. Suppose K/Q is a number field with disc(K) = d and OK its
ring of integers. We say that a prime p is a regular discriminant divisor, if for each
β ∈ OK such that p | disc(β)·d−1, then there exist α ∈ OK such that p - disc(α)·d−1

and disc(α) | disc(β).

Example 3.2. It follows obviously that if OK = Z[α] is monogenic, then every
prime p is a regular essential discriminant divisor. This is because for any fixed
prime p and for whatever choice of β, α satisfies the condition in the definition.

Remark 3.3. If p divides the nonessential discriminant divisor of a field K, then p
divides the index of any monogenic order Z[β]. In other words, there does not exist
α ∈ OK such that p - disc(α) · d−1. Hence any prime divisor of the nonessential
discriminant divisor is not regular.

Remark 3.4 (Why call it regular ?). First, if p does not divide the discriminant
of the field dK , then p does not ramify in K. Moreover, if p does not divide the
non-essential discriminant divisor of K, then for each α ∈ K such that p - disc(α)
and K = Q(α), suppose f(x) is the minimal polynomial of α, then f(x) has no
repeated root over Fp, in particular, Spec(OK) is locally regular at the fibre over
(p). This is the reason we call it regular discriminant divisor .

It is conjectured the following proposition but not yet proved in my project:

Conjecture 3.5. There are no more than π(n) non-regular discriminant divisor
of K, where n = [K : Q] and π(n) = ]{p prime|p ≤ n}.

Even the following weaker proposition, which is very likely to be true, is not easy
for me to finish the prove in this project

Conjecture 3.6. There exist only finitely many primes that are not regular dis-
criminant divisor for a given number field K.
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The use of non-regular discriminant divisor is that we can determine the number
of generators of OK when the non-essential discriminant divisor equal to 1.

Proposition 3.7. Suppose that i(K) = 1 and there are k primes that are not
locally regular for K, then OK needs at most k generators as Z-algebra.

Proof. Since i(K) = 1, it suffices to find a Z-algebra Z[α1, . . . , αk] such that
gcd(d(α1), . . . , d(αk)) = 1. Since for each β ∈ OK , we can find another integer
α such that p - d−1 · d(α) and β ∈ Z[α] for each locally regular p. Therefore there
exist a subset of OK , namely G = {α1, . . . , αm, . . .} such that p - d−1 ·d(αi) for each
locally regular p and gcd(α1, . . . , αm, . . .) = 1. Since i(K) = 1, for each non-locally
regular prime pj , we can choose an αj from G such that d−1 · d(αj) is not divisible
by pj . By this way, we get a set {α1, . . . , αk} corresponding the non-locally reg-
ular primes p1, . . . , pk. Then the index of Z[α1, . . . , αk] is not divisible by neither
the non-locally regular primes nor the locally regular primes, therefore the index is
equal to 1, which means that OK = Z[α1, . . . , αk].

�

We cite from [Śliwa1, Pleasant4] that the minimal number of irreducible poly-
nomials of OK over Z is determined by P.Pleasants. To formulate his result, we
introduce the following notations as [Śliwa1, Pleasant4]:

If q = pk, let π(q, f) be the number of irreducible polynomials of degree f over
the finite field with q elements. For any prime ideal p of OK dividing p, denote by
mp the minimal m such that

π(NK/Q(pm),deg p) ≥ g(deg p)

and let
mp(K) = max

p|p
mp.

Obviously mp = 1 for all but a finite number of p’s. Now put m(K) = max
p

mp(K).

Pleasant [Pleasant4] showed that the minimal number of generators of OK is
equal to mK , unless mK=1, in which case two generators may be needed.

References
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