
The Long Shadow of Évariste Galois

Robert L. Miller

December 7, 2007

Contents

1 Introduction 2

2 Galois Representations 3
2.1 Representation Theory . 3
2.2 Algebraic Field Extensions . 5
2.3 Galois Theory . 8
2.4 Modular Representation Theory 11
2.5 p-adic Galois Representations . 12

3 Galois Cohomology 13
3.1 Derived Functors . 13
3.2 Group Cohomology . 13
3.3 Changing Groups . 15
3.4 Elliptic Curves . 16

4 Computations and Code 20
4.1 Computing E[n] . 20
4.2 Visualizing E[n] . 21
4.3 Detecting the Isomorphism . 21
4.4 Computing the Isomorphism . 22
4.5 Visualizing the Isomorphism . 23
4.6 Specific Isomorphisms . 24

5 Appendix 29
5.1 A Conversation with Carl Witty 29
5.2 New and Improved, Wheel . 33

1

Chapter 1

Introduction

There are several spots in this paper where I would have said more, had I
the time to chase out all the details. These spots are indicated by the label
MISSING.

MISSING- a nice biographical sketch of Évariste.

2

Chapter 2

Galois Representations

2.1 Representation Theory

In general, mathematics benefits whenever two different types of objects are
related by some kind of action. For example, studying the action of a group
G on the set underlying the group gives rise to Cayley’s theorem, which says
that every finite group is isomorphic to a subgroup of the symmetric group
S∞ = lim−→n

Sn. Many of the results from Sylow theory come from studying
the action of a group on some set, usually cosets of one group in another.
Representation theory is the study of groups acting (linearly) on vector spaces.

Definition 2.1.1. A (linear) representation of a group G is a group homomor-
phism ρ : G→ GL(V), where V is a vector space over a field F ; in other words,
a vector space V together with a G-action that acts linearly. Equivalently, a
representation of a group G is a module V over the group ring FG, in which case
we say that V affords the representation ρ. The degree of the representation
is the dimension of V . The representation is faithful if the homomorphism is
injective.

Definition 2.1.2. Fix a group G and a field F . Two representations are equiv-
alent if the FG-modules affording them are isomorphic as modules. Terms such
as reducible, decomposable, and semisimple are inherited from the corresponding
modules.

One consequence of the following theorem is that every representation of a
finite group over Q is semisimple.

Theorem 2.1.3 (Maschke’s Theorem). If G is a finite group and F is a field
of characteristic not dividing |G|, and V is an FG-module with a submodule U ,
then V = U ⊕W for some submodule W .

Proof. By assumption, n = |G| is invertible in F . First, we know that there is
a complement W0 such that V = U ⊕W0 as vector spaces. Let π0 : V → U be

3

the associated projection, and define π : V → U by

π =
1
n

∑
g∈G

gπ0g
−1,

the average of π0 over G. U is an FG-module, so if u ∈ U , g−1(u) ∈ U , and by
definition π0(g−1(u)) = g−1(u). Therefore π(u) = u for all u ∈ U , and it is easy
to check that π2(v) = v for all v ∈ V . In fact, taking the average over G makes
π an FG-module homomorphism, since

π(hv) =
1
n

∑
g∈G

gπ0(g−1hv) = h
1
n

∑
h−1g∈G

(h−1g)π0((g−1h)v) = hπ(v).

Therefore V ∼= U ⊕ kerπ as FG-modules.

The whole notion of averaging in the proof of Maschke’s theorem depends
crucially on the hypothesis that |G| is invertible in F . This is meaningless when
the characteristic of F divides the order of the group (see section 2.4).

Definition 2.1.4. A character of a group G over a field K is a one-dimensional
representation χ : G→ GL1(K) = K×. The characters χ1, ..., χn are said to be
linearly independent over K if they are independent as functions:

k1χ1 + · · ·+ knχn = 0 : G→ K ⇒ k1 = · · · = kn = 0.

Definition 2.1.5. The character χρ of a representation ρ : G → GLn(K) is
defined by χρ(g) = tr(ρ(g)), where tr is the trace.

Every character value χ(g) is a sum of nth roots of unity, as long asG contains
no elements of infinite order. If K = C or Q, this implies that χ(g) ∈ Z.

Theorem 2.1.6 (Linear Independence of Characters). If χ1, ..., χn are distinct
characters of a group G over K, then they are linearly independent over K.

Proof. If we have a nontrivial relation, then at least one ki is nonzero, and
after reordering, we have k1χ1(g) + · · · + kmχm(g) = 0 for all g ∈ G, with all
of the ki nonzero and m ≤ n. Pick an element g0 ∈ G such that χ1(g0) 6=
χm(g0). First, the relation with g0g gives

∑m
i=1 kiχi(g0)χi(g) = 0. Next, we

can multiply the relation with g by χm(g0) to get
∑m
i=1 kiχm(g0)χi(g) = 0.

Subtracting the one from the other, we obtain
∑m−1
i=1 (χm(g0)−χi(g0))kiχi(g) =

0. Since χm(g0) − χ1(g0) 6= 0, this is a nontrivial relation involving one less
character. We can repeat the process, eventually obtaining a nontrivial relation
involving one character, k′1χ1(g) = 0 for all g ∈ G. This implies χ1(g) = 0, a
contradiction.

4

2.2 Algebraic Field Extensions

From the very beginning, representation theory gives remarkable results in field
theory. First, recall that any ring homomorphism σ : F → K between fields is
either zero, or injective, since the kernel must be an ideal. Thus any nontrivial
map of fields is an embedding.

Corollary 2.2.1 (to Theorem 2.1.6). If σ1, ..., σn : F ⊂ - K are distinct
embeddings of fields, then they are linearly independent over K.

Proof. Consider the group homomorphisms σi|F× : F× → K×.

Proposition 2.2.2. Suppose G ≤ Aut(K) is a finite subgroup of the set of field
automorphisms of K, and F is the fixed field KG. Then [K : F] = |G|.

Proof. Denote G = {σ1, ..., σn}, where σ1 = id. If b1, ..., bm is a basis for K over
F , then the system of equations

σ1(bi)x1 + · · ·+ σn(bi)xn = 0; i = 1, ...,m

will have a nontrivial solution (x1, ..., xn) = (β1, ..., βn) if there are less equations
than unknowns, i.e. if m < n. If this is the case, setting a1, ..., am ∈ F , we have
that σj(ai) = ai, since the σj fix F . Multiplying by ai, we get the system of
relations

σ1(aibi)β1 + · · ·+ σn(aibi)βn = 0; i = 1, ...,m,

which we can sum to obtain, with b = a1b1 + · · · ambm, the relation

σ1(b)β1 + · · ·+ σn(b)βn = 0,

a contradiction to Corollary 2.2.1. Thus we have [K : F] = m ≥ n.
Suppose there are n + 1 F -independent elements of K, say b1, · · · , bn+1.

Then the system of n equations in n+ 1 variables

σi(b1)x1 + · · ·+ σi(bn+1)xn+1 = 0; i = 1, ..., n

has a nontrivial solution (x1, ..., xn+1) = (β1, ..., βn+1) ∈ Kn+1. Assume that
the solution we have chosen has the minimal number s of zero entries, and that
these are the first s entries, by reordering. Thus there are nonzero β1, ..., βs ∈ K
such that

σi(b1)β1 + · · ·+ σi(bs)βs = 0; i = 1, ..., n,

and since βs is nonzero, we can divide through, relabeling to obtain

σi(b1)β1 + · · ·+ σi(bs−1)βs−1 + σi(bs) = 0; i = 1, ..., n. (2.2.1)

If all the βj are in F , then since σ1 = id, the equation

σ1(b1)β1 + · · ·+ σ1(bs−1)βs−1 + σ1(bs) = 0

5

is a contradiction, since the bj are linearly independent over F . So at least
one of the βj is in K \ F : assume β1 6∈ F . Then there is an automorphism
σr, r ∈ {1, ..., s}, such that σr(β1) 6= β1.

Since G = {σ1, ..., σn} is a group, we have {σ1, ..., σn} = {σrσ1, ..., σrσn}, so
if we apply σr to the above equations, we can rewrite the result as

σj(b1)σr(β1) + · · ·+ σj(bs−1)σr(βs−1) + σj(bs) = 0; j = 1, ..., n. (2.2.2)

Combining the two equation systems by subtracting equation 2.2.2 from equa-
tion 2.2.1 gives

σj(b1)(β1 − σr(β1)) + · · ·+ σj(bs−1)(βs−1 − σr(βs−1)) = 0; j = 1, ..., n.

However, this is a nontrivial (β1 − σr(β1) 6= 0) solution to the original system
of equations with fewer nonzero entries, a contradiction. Thus [K : F] ≤ n.

Corollary 2.2.3. Given any finite extension K/F ,

|Aut(K/F)|
∣∣∣∣[K : F].

Proof. Since the extension is finite, K = F (α1, ..., αn). Each αi must still
satisfy its minimal polynomial after an automorphism, so each αi has finitely
many places to go. Therefore Aut(K/F) is a finite group. The fixed field L of
Aut(K/F) lies somewhere between K and F , and [K : F] = [K : L][L : F] =
|Aut(K/F)|[L : F].

Proposition 2.2.4. Suppose K/F is an extension of fields, and α ∈ K. Either
F (α) ∼= F (x), the field of rational functions over F , or there exists a unique
monic irreducible polynomial mα(x) ∈ F [x] such that f(α) = 0 iff mα|f . Fur-
ther, in this case, F (α) = F [α], and [F (α) : F] equals the degree of mα.

Proof. If there is no nonzero polynomial in F [x] with α as a root, then there
is a ring isomorphism F (x) → F (α) given by f(x)/g(x) 7→ f(α)/g(α). If there
is some nonzero polynomial with α as a root, then suppose mα(x) is such a
polynomial of least degree, and by dividing through by the leading term, suppose
mα(x) is monic. Since mα(α) = 0, mα|f ⇒ f(α) = 0. Now if f(α) = 0, divide
f by mα to obtain 0 = f(α) = mα(α)q(α) + r(α), where the degree of r is less
than that of mα, whence r(α) = 0 implies r = 0. Thus mα|f . Then mα is
unique, since any other candidate would be monic, divide, and be divisible by
mα. Since F [x] is a domain, mα must be irreducible. The last facts come from
examining the isomorphism F (α) ∼= F [x]/(mα(x)).

Definition 2.2.5. In the first case, α is transcendental over F , and in the
second, α is algebraic over F .

Corollary 2.2.6. If K/F is an extension and α ∈ K, then F (α)/F is a finite
extension if and only if α is algebraic.

6

Proof. Note that the extension F (x)/F is infinite, since {1, x, x2, ...} is an inde-
pendent set over F , and that [F [x]/(m(x)) : F] = degm <∞.

Definition 2.2.7. A field extension K/F is algebraic if every element of K is
algebraic over F .

Proposition 2.2.8. (1) If K/L is a finite extension, then it is algebraic. (2) If
K/L and L/F are algebraic extensions, then K/F is algebraic. (3) If {Kα/F}
is a family of algebraic extensions, then (

∏
αKα) /F is an algebraic extension.

Proof. (1) If K/L were finite but not algebraic, then there would be a tran-
scendental element t ∈ K, and 1, t, t2, ... would all be linearly independent, a
contradiction.

(2) If β ∈ K, then since it is algebraic over L, it is the root of a polyno-
mial βnxn + · · ·+ β1x+ β0 with coefficients βi in L. Indeed, β is algebraic over
F (β0, β1, ..., βn), a finite extension of F , hence the extension F (β0, β1, ..., βn, β)/F
is finite. In particular, F (β)/F is also finite, hence β is algebraic over F .

(3) If β ∈
⋃
αKα, then β ∈ Kα0 for some α0. Then β is algebraic over

F .

Example 2.2.9. Even though finite extensions are algebraic, consider the infi-
nite sequence of extensions

Q (Q(
√

2) (Q(4
√

2) (· · · .

The union of all of these is an algebraic extension, since any element lives in
some Q(2k√

2).

Any finite extension is algebraic, but algebraic extensions K/F in general
need not be finite. Given an element α ∈ K, it must be algebraic, so the
extension F (α)/F is finite. Since F (α) ⊂ K, we have that K =

⋃
α∈K F (α).

This gives us at least some way of dealing with infinite algebraic extensions in
terms of finite ones.

Definition 2.2.10. The field K is called an algebraic closure of F if K is
algebraic over F and if every polynomial of F [x] splits completely over K.

Definition 2.2.11. The field K is called algebraically closed if every polynomial
with coefficients in K has a root in K. In particular, this implies that the
polynomial will have all its roots in K.

It comes straight from the definitions that an algebraic closure is alge-
braically closed: a root α of a polynomial f(x) ∈ K[x] generates an algebraic
extension K(α)/K, and K(α)/F is also algebraic. Then α is algebraic over F ,
and α ∈ K.

Proposition 2.2.12. Zorn’s Lemma implies that any field F has an algebraic
closure.

7

Proof. Form the ring B = F [..., xf , ...] with indeterminates indexed by all the
nonconstant monic polynomials f(x) ∈ F [x] (B is for big). Let I be the ideal
generated by f(xf) for all the f(x). If this ideal is not a proper subset of B, then
there are g1, ..., gn ∈ B such that g1f1(xf1)+· · ·+gnfn(xfn

) = 1. There are only
finitely many gi, in finitely many variables involved in the fi, so assume xfi

= xi
and define xn+1, ..., xm to be the rest of them. There is a finite extension of F
which contains roots αi of the fi, and in this extension, plugging in those roots
gives the equation 0 = 1, a contradiction. Therefore I is a proper ideal.

Zorn’s Lemma implies that I is contained in some maximal ideal M , and
since I ⊂ M , the field B/M contains at least one root of every polynomial in
F [x]. Since each xf is the root of some polynomial, the new field is algebraic. If
we repeat this process a countable number of times, we get an increasing chain
of algebraic extensions, and a polynomial of degree N must have split after only
N extensions. The union of all these is again an algebraic extension over F ,
and every polynomial splits completely, so we have an algebraic closure.

The proof of the following fact is similar to that of 2.2.12, along with us-
ing extension of isomorphisms. Although it does not directly follow from the
statement, it is still in some sense a

Corollary 2.2.13. Two algebraic closures of the same field F are isomorphic.

In light of the above, we often denote an algebraic closure of F by F , but note
that since Aut

(
F
)

is (highly) nontrivial, F is only defined up to isomorphism.
Often when F = Q, Q denotes the subset of C consisting of algebraic numbers.

2.3 Galois Theory

SupposeK/F is an algebraic field extension. Consider the groupG = Aut(K/F)
of field automorphisms of K that fix F . Denote the fixed set of σ by Kσ = {k ∈
K : σ(k) = k}, and the fixed set of G by KG =

⋂
σ∈GK

σ. Note that F ⊆ KG.
In terms of the group G, the more natural base of the extension seems to be the
field KG.

Definition 2.3.1. We say that the extension is Galois if the fixed field KG is
exactly F .

Example 2.3.2. Suppose F = Fp(t) is the field of rational functions over the
finite field Fp, and K = Fp(t1/p). The minimal polynomial of t1/p is xp − t =
(x− t1/p)p, which has only one root. Thus any automorphism σ ∈ Aut(K/F)
must fix t1/p, hence all of K. Because Aut(K/F) is trivial, K/F is not a Galois
extension.

Although the irreducible polynomial xp− t splits completely over K, it con-
tains only one repeated root, and the automorphism group cannot detect the
field F . Recall that a polynomial is separable if it splits into distinct linear
factors in its splitting field.

8

Definition 2.3.3. An extension K/F is separable if every element of K is a
root of a separable polynomial over F . In particular, every separable extension
is algebraic.

Proposition 2.3.4. The composite L1L2 of two separable extensions L1/F and
L2/F is separable.

Proof. The composite L1L2 is isomorphic to L1⊗F L2 mod a maximal ideal M ,
as F -algebras: given any composite K in any field, we can map L1 ⊗F L2 → K
by multiplication. Note that since K is a field, the kernel is some maximal ideal.
Also, by minimality, the map must be surjective. This proves that each K is
isomorphic to L1L2.

Example 2.3.5. Suppose F = Q is the rational numbers, and K = Q
(

3
√

2
)
.

First, suppose σ : K → K is an automorphism of K fixing Q, and denote
α = 3

√
2. Since α3 = 2, we have σ(α3) = σ(α)3 = 2, so σ sends α to another

cube root of 2. In particular, σ(α) ∈ {α, ζα, ζ2α}, where ζ is a primitive 3rd

root of unity. However, ζ 6∈ K, so σ(α) = α. This implies that Aut(K/F) is
the trivial group, and its fixed field is K, hence K/F is not Galois.

The irreducible polynomial x3 − 2 has a root in K, but does not split com-
pletely, and again the automorphism group fixes a field larger than F .

Definition 2.3.6. An algebraic extension K/F is normal if every irreducible
polynomial in F [x] which has a root in K splits into linear factors over K. In
other words, K is the splitting field of some collection of polynomials in F [x].

These two properties characterize all Galois extensions.

Proposition 2.3.7. If K/F is a finite extension, then it is Galois if and only
if it is separable and normal.

Proof. ([3], Theorem 13, Chapter 14. Also useful, Theorem 27, Chapter 13)

Lemma 2.3.8. If L/F is a finite separable extension, then there is a unique
field L′ such that L′/F is a Galois extension, L′ ⊇ L, and any other Galois
extension L′′/F containing L also contains L′. Furthermore, L′/F is finite.

Proof. Take the composite of the splitting fields of the minimal polynomials of
a basis for L over F . Each of these splitting fields is separable, since L/F is,
hence there is a finite Galois extension of F containing L. Now simply take the
intersection of all such extensions.

Definition 2.3.9. The field L′ is called the Galois closure of F in L.

Proposition 2.3.10. K/F is Galois if and only if it is separable and normal.

Proof. ⇒ If α ∈ K, then the Galois closure of F (α) contains α, hence the
minimal polynomial of α over F must be separable, by 2.3.7. If f(x) ∈ F [x] is
an irreducible polynomial with root α ∈ K, then the minimal polynomial of α

9

is just f(x) divided by its leading coefficient. Thus again by 2.3.7, f(x) splits
into linear factors over the Galois closure of F (α), which is contained in K.
⇐ We must show that for any α ∈ K \ F , there is an automorphism σ ∈

Aut(K/F) such that σ(α) 6= α. Define L to be the splitting field of the minimal
polynomial of α over F . By hypothesis, F ⊂ L ⊂ K, and since L/F is a Galois
extension, there is an automorphism of L fixing F that does not fix α. Then
the idea is to extend this automorphism to all of K.

Definition 2.3.11. The absolute Galois group Gk of a field k is the Galois
group Gal(ksep/k), where ksep is a separable closure of k. If k is a perfect
field, then ksep ∼= k, where k is any algebraic closure of k, and in this case
Gk = Gal(k/k). Often we will be interested in the most perfect field, Q, and
if the field is not specified, the absolute Galois group, and sometimes just the
Galois group, means GQ.

The algebraic closure Q of Q is equal to the union of all number fields, and
for any two such fields F ⊂ F′ and σ ∈ GQ, we have that σ|F = (σ|F′)|F. Thus
we can write the absolute galois group as an inverse limit over number fields F,

GQ = lim←−
F

Gal (F/Q) .

Note that every number field F is contained in a Galois closure G inside of
Q ⊃ G ⊇ F. Hence we could also write the absolute galois group as an inverse
limit over Galois number fields G,

GQ = lim←−
G

Gal (G/Q) .

In general, when we are dealing with an inverse limit of finite groups, called a
profinite group , there is a natural topology on the inverse limit. If G = lim←−αGα
is a profinite group, for each α there is a projection G -- Gα. We can define
a topology on G by requiring the kernels of these maps to be a basis of the
identity, and assuming that multiplication is continuous. Reader beware! The
same profinite group may end up having different topologies depending on which
index set is used.

Definition 2.3.12. When considering the Galois group as an inverse limit of
all number fields, the topology that arises is called the Krull topology. When
considering only those number fields which are Galois over Q, the topology that
arises is called the Galois topology.

Often this distinction is confused, and terminology is not standard. For
example, [2] and [4] both use the term Krull topology to refer to the Galois
topology, whereas [3] defines the Krull topology the way we have. The term
Galois topology is introduced here simply to clarify the situation. More gener-
ally, suppose L/F is a Galois extension. We can define the Galois and Krull
topologies in exactly the same way.

Note that we always take the Galois topology.

10

Theorem 2.3.13 (The Fundamental Theorem of Galois Theory). Suppose L/F
is a Galois extension. The correspondence

K 7→ Gal(L/K)

where K is an intermediate field extension F ⊂ K ⊂ L, is an inclusion re-
versing bijection between the set {K : F ⊂ K ⊂ L} of all intermediate field
extensions and the set of all closed subgroups of Gal(L/F). Normal closed sub-
groups correspond to Galois extensions, and open subgroups correspond to finite
extensions.

Proof. See [4], page 3.

Proposition 2.3.14. If L ⊂ Q is a Galois extension of Q, then every map
L - Q has its image in L.

Proof. A nonzero map L - Q is an isomorphism onto its image, and this
isomorphism can be extended to all of Q, and L is a Galois conjugate of its
image. Since L is Galois, they are the same.

2.4 Modular Representation Theory

Example 2.4.1. Suppose we have an elliptic curve E defined over Q. E is an
example of an abelian variety, which is a projective algebraic variety, together
with an algebraic group structure. Group operation and taking inverses act
as regular functions, and projectivity implies (nontrivially) that the group is
abelian (so denote the group law by +). The complex points E(C) of E are
isomorphic to the quotient of C by a rank 2 lattice Λ, with complex addition as
the group law. This isomorphism is defined in terms of the Weierstrass elliptic
function ℘, by

C/Λ - E(C) : z 7→

{
[℘(z) : ℘′(z) : 1] z 6∈ Λ
[0 : 1 : 0] z ∈ Λ

Consider the subgroup E[p] = {Q ∈ E : pQ = 0}, where pQ = Q+ · · ·+Q,
p times, called the p-torsion subgroup. This group is abstractly isomorphic
to (Z/pZ)2, since Λ is a full rank sublattice of ℘−1(E[p]). E[p] is a vector
space over Fp of dimension 2. The coordinates of its points generate a field,
denoted Q(E[p]). This field sits inside of Q, since the defining equation of
E is a polynomial over Q. The absolute Galois group Gal(Q/Q) acts on the
coordinates of E[p], since the coefficients of the defining equation are fixed. The
action of this group on E[p] factors through a finite Galois group Gal(K/Q) for
some number field K. In fact, K is just the Galois closure of Q(E[p]).

So we have a mod p representation of the finite group G = Gal(K/Q):

G
ρ- GL2(Fp) ∼= Aut(E[p])

This is called a modular Galois representation, since the base field is Fp. Two
good references for this are [5] and [6].

11

In general, if the characteristic p of a field F divides |G|, then Maschke’s
theorem does not hold, and the group algebra is not generally semisimple. This
belongs to the domain of modular representation theory, which was essentially
founded by Richard Brauer.

A mod p `-isogeny is a surjective morphism ϕ : E[p] - F [p] with finite
kernel of order `. The Fourier coefficients of an elliptic curve are defined by

ap(E) = p+ 1−#E(Fp),

and as it turns out they are the traces of the Frobenius endomorphism, which
gives them the special role of being Brauer characters. Thus, it is a consequence
of the Brauer-Nesbitt theorem (see [1]) that

Proposition 2.4.2. If
aq(E) ≡ aq(F) mod p

for all primes q - pNENF ` where NE is the conductor of E and the same for F ,
then there exists a mod p `-isogeny between E and F . In particular, E[p] ∼= F [p]
as Galois representations.

MISSING - A better understanding of how this works.

2.5 p-adic Galois Representations

One can also consider the full set of maps given by multiplication by p:

E[p] ��
[p]

⊂
E[p2] ��

[p]

⊂
E[p3] ��

[p]

⊂
· · ·

Since the embedding Q ⊂ - C is fixed, so are the isomorphisms E[pk] ∼=
(Z/pkZ)2 (and they respect the maps [p]), yielding that the p-adic Tate module

Tap(E) := lim←−
k

E[pk] ∼= Z2
p

is group-isomorphic to two copies of the p-adic integers Zp. Each Q(E[pk]) is
Galois over Q, and restriction commutes, in the sense of the following diagram.

GQ

Gal(Q(E[pk])/Q) �
[p] ◦ ·�

·| Q(E
[p

k])

Gal(Q(E[pk+1])/Q).

·|Q(E
[p k+

1
])
-

In other words, the Tate module is actually a GQ-module, and hence defines a
representation

ρE,p : GQ - GL2(Zp).

It turns out that this representation is irreducible, and is usually called the
p-adic Galois representation arising from the elliptic curve E.

12

Chapter 3

Galois Cohomology

3.1 Derived Functors

MISSING - but for a good reference, see [10].

3.2 Group Cohomology

For this section and the next, one can follow along with the treatment in chapter
VII of [7].

Definition 3.2.1. If G is a group acting on an abelian group A, then this
action affords a module structure on A over the group algebra Z[G]. Since A is
an abelian group, it is already a Z-module. We define the Z[G]-module structure
by
(∑

g∈G ngg
)
· a =

∑
g∈G ng(g · a). We call A a G-module.

Definition 3.2.2. A sequence of G-module homomorphisms

A1
f1- A2

f2- · · · fn−1- An

is said to be exact if ker fi+1 = im fi for each i = 1, 2, . . . , n − 2. Often n = 5
and A1 = A5 = 0. In this case we have a short exact sequence

0 - A2
f2- A3

f3- A4
- 0,

and it is a trivial consequence of the definition that in this case, f2 is injective
and f3 surjective.

Example 3.2.3. Any surjective map A -- B can be extended to a short
exact sequence, by the first isomorphism theorem:

0 - ker(A -- B) - A - B - 0.

13

Letting AG denote the subset of A fixed by the action of G, notice that if
f : A - B is a homomorphism of G-modules, then f(AG) ⊂ BG. Thus there
is a functor A 7→ AG.

Definition 3.2.4. A functor F is called left exact if whenever

0 - A - B - C

is exact, then so is

0 - F (A) - F (B) - F (C).

Proposition 3.2.5. The functor A 7→ AG is left exact.

Proof. Suppose
0 - A

f- B
g- C

is an exact sequence of G-modules. To show that

0 - AG
f- BG

g- CG

is exact, we just need to establish that the map AG - BG is injective and that
im(AG - BG) = ker(BG - CG). Thinking of A - B as an inclusion
should make the prior clear. To show the latter, suppose a ∈ AG. Since the
original sequence was exact, g(f(a)) = 0. On the other hand if b ∈ BG such
that g(b) = 0, then there is an a ∈ A such that f(a) = b. We must only show
that g · a = a for all g ∈ G. Noting that f(g · a) = g · f(a) = g · b = b = f(a),
since f is injective, a ∈ AG as desired.

If Z is the G-module with trivial action g · n = n, then AG = HomG(Z, A)
in the following sense. An element of AG is the image f(1) of 1 under some
map f : Z - A, since the G-action has been trivialized: g · f(1) = f(g ·
1) = f(1). Further, the elements of AG are the only possible images of such
homomorphisms. This allows for the interpretation of the cohomology Hq(G,A)
as the derived functors Extq(Z, A) of the functor HomG.

Given a short exact sequence of G-modules

0 - A - B - C - 0,

there is a connecting homomorphism δ : Hq(G,C) - Hq+1(G,A) such that

· · · - Hq(G,B) - Hq(G,C)
δ- Hq+1(G,A) - hq+1(G,B) - · · ·

is a long exact sequence.
For an explicit construction of H∗, we first use a specific free resolution of

Z. Let Pi be the free Z-module generated by (g0, ..., gi) for gj ∈ G, where G
acts on all components: g · (g0, ..., gi) = (gg0, ..., ggi). Define d : Pi - Pi−1

by

d(g0, ..., gi) =
i∑

j=0

(−1)j(g0, ..., ĝj , ..., gi),

14

and define P0
- Z by mapping each gj onto 1 ∈ Z. We now have the exact

sequence of projective (except for Z) G-modules

· · · - Pi - Pi−1
- · · · - P1

- P0
- Z - 0.

As HomG(Pi, A) ranges over i, we have a cochain complex, and we can define

Hq(G,A) = Hq(HomG(Pi, A)).

In this cochain complex, elements of HomG(Pi, A) are just homomorphisms
f : Pi - A, and the coboundary map is given by

df(g0, ..., gi) =g0 · f(g1, ..., gi) (∗)

+
i−1∑
j=0

(−1)jf(g1, ..., gjgj+1, ..., gi)

+ (−1)if(g0, ..., gi−1).

3.3 Changing Groups

A group homomorphism f : G - H can be used to define a G-module
structure on an H-module A by

g · a = f(g) ·A.

To indicate that we are pulling back the group module structure by f , we write
the resulting G-module as f∗A. This provides a morphism of functors from
H0(H,A) to H0(G, f∗A). By the universal property of derived functors, this
extends to a morphism of cohomology functors, denoted

f∗q : Hq(H,A) - Hq(G, f∗A).

Example 3.3.1. If f : G ⊂ - H is the inclusion of a subgroup G into H, the
resulting morphism is denoted

Res : Hq(H,A) - Hq(G,A),

for restriction.

Definition 3.3.2. Given an additive map g : A - B between an H-module
A and a G-module B, we say that f and g are compatible if g is a G-module
homomorphism from f∗A to B.

In this case, g gives a homomorphism Hq(G, f∗A) - Hq(G,B), which
when composed with the above map gives the homorphism associated to the
pair (f, g)

(f, g)∗q : Hq(H,A) - Hq(G,B).

15

Example 3.3.3. SupposeH is a normal subgroup ofG. Letting f : G - G/H
be the quotient map and g : AH - A be the inclusion, it is easy to show
they are compatible. The resulting morphism is denoted

Inf : Hq(G/H,AH) - Hq(G,A)

for inflation.

3.4 Elliptic Curves

Recall 2.4.1. For p a prime and ` another prime, it is easy to check for `-isogenous
congruences E[p] ∼= F [p] (see section 2.4), which imply that the Galois repre-
sentations are equivalent. If this is the case, consider the following commutative
diagram:

0 - E[p] - E(Q)
[p]- E(Q) - 0

0 - F [p]

∼=

?
- F (Q)

[p]- F (Q) - 0

Applying the functor H∗ we obtain the long diagram (recall that H0(G,A) =
AG):

· · · - E(Q)GQ
[p]- E(Q)GQ

δ- H1(GQ, E[p]) - · · ·

· · · - F (Q)GQ
[p]- F (Q)GQ

δ- H1(GQ, F [p])

∼=
?

- · · ·

Note that E(Q)GQ is just E(Q), so we can rewrite the above diagram in terms
of the cokernel of [p]:

0 - E(Q)/pE(Q)
δ- H1(GQ, E[p]) (∗∗)

0 - F (Q)/pF (Q)
δ- H1(GQ, F [p])

∼=
?

The construction (*) gives us formulas for working with this diagram. Any
cocyle of H1(GQ, E[p]) can be expressed as a crossed homomorphism, which is
a homomorphism f : GQ - E[p] satisfying

f(σσ′) = σ · f(σ′) + f(σ).

16

To get the full picture, we must mod out by coboundaries, which are functions
of the form

f(σ) = σ(S)− S
for some S ∈ E[p].

Given a point P ∈ E(Q)/pE(Q), we can express its image as a homomor-
phism

δ(P) : GQ - E[p] : σ 7→ σ(R)−R
for R such that pR = P . Notice that δ(P) is trivial iff R ∈ E[p] iff P = O is
the identity.

Lemma 3.4.1. If E[p] ∼= F [p] as Galois representations, then

Q(E[p]) = Q(F [p]).

Proof. First note that the field Q(E[p]) is Galois over Q. To obtain it, you first
split the division polynomial, whose roots αi are the x-coordinates of E[p]. To
obtain the y-coordinates, you plug αi into x in the defining equation for E,
and solve for y. This is also a polynomial you are splitting, so in the end the
extension is Galois. The same goes for Q(F [p]).

Since E[p] ∼= F [p] as Galois representations, this isomorphism extends to an
isomorphism Q(E[p]) ∼= Q(F [p]), which by Proposition 2.3.14 must be equality.

Note that this implies that the representations factor through the same Ga-
lois extension:

GQ - Aut(E[p])

Gal(Q(E[p])/Q)

-

-

Gal(Q(F [p])/Q)

=

?

GQ -

-

Aut(F [p])

-

The particular case of interest is when E is a curve of rank 2, and F is a
curve of rank 1. Further, we will assume that the representations arising from
these curves are surjective, e.g. the homomorphism

ρ : GQ - Aut(E[p])

17

is surjective. Let GK := Gal(Q/K) for K an intermediate extension of Q/Q.
Note that this is a generalization of our notation for GQ.

Suppose the Mordell-Weil groups are presented as E(Q) = 〈P1, P2〉×E(Q)tor
and F (Q) = 〈R〉 × F (Q)tor. Let

K = Q
(

1
p
·R
)

be the extension of Q by a fixed pth root of R, and for a, b ∈ Z, similarly let

Ka,b = Q
(

1
p
· (a · P1 + b · P2)

)
be the extension of Q by a fixed pth root of Pa,b := a · P1 + b · P2.

In the diagram (**), we are interested to know whether δ(E(Q)/pE(Q)) and
δ(F (Q)/pF (Q)) are related. If δ(P a,b) and δ(R) are scalar multiples, then their
kernels, as crossed homomorphisms, are the same. Recall that

δ(P a,b) : σ 7→ σ

(
1
p
· Pa,b

)
− 1
p
· Pa,b.

The kernel of this is exactly those σ ∈ GQ fixing 1
p ·Pa,b, i.e. GKa,b

. Thus by the
Galois correspondence, if δ(P a,b) and δ(R) are scalar multiples, then K = Ka,b.

On the other hand, suppose the compositums K.Q(F [p]) = Ka,b.Q(E[p]) are
equal. We begin by examining the isomorphism

H1(GQ, E[p])
∼=- H1(GQ, F [p]).

Applying the restriction map Res coming from the inclusion Gal(Q/Q(E[p])) ⊂ - Gal(Q/Q),
and similarly for F , the isomorphism extends:

H1(GQ, E[p])
∼= - H1(GQ, F [p])

H1(GQ(E[p]), E[p])

Res

? ∼=- H1(GQ(F [p]), F [p]).

Res

?

The kernel of

Res : H1(Gal(Q/Q), E[p]) - H1(Gal(Q/Q(E[p])), E[p])

is
H1(Gal(Q(E[p])/Q), E[p]) ≈ H1(GL2(Fp),F2

p),

since the representations are surjective. The claim is that this kernel is zero, so
that Res is injective.

18

If p = 2, then GL2(Fp) ∼= S3. Suppose σ : S3
- Z/2Z2 is a group

homomorphism. By order, σ((1 2 3)) = 0, hence σ(a) + σ(b) = σ(ab) = 0 for
every a, b ∈ S3. Further, they must be crossed homomorphisms, so 0 = σ(ab) =
aσ(b) + σ(a) for all a, b ∈ S3. Since p = 2, this means aσ(b) = σ(a) for all a, b,
so b = 0 gives that σ(a) = 0 for all a ∈ S3. Thus the kernel is trivial. If p 6= 2,
the argument at the end of the proof of Proposition 5.1 in [9] shows that the
kernel must still be zero.

Therefore the Res maps are injective. Since the action ofGQ(E[p]) = Gal(Q/Q(E[p]))
on E[p] is trivial, we have that

H1(GQ(E[p]), E[p]) ∼= Hom(GQ(E[p]), E[p]),

which means we can write the diagram as

H1(GQ, E[p])
∼= - H1(GQ, F [p])

Hom(GQ(E[p]), E[p])

Res

?

∩

∼=- Hom(GQ(F [p]), F [p]).

Res

?

∩

By injectivity, to compare δ(R) and δ(Pa,b) in H1(GQ, E[p]) ∼= H1(GQ, F [p]),
we can compare δ(R) to δ(Pa,b) in

Hom(GQ(E[p]), E[p]) ∼= Hom(GQ(F [p]), F [p]).

Recall from Proposition 2.3.14 that Q(E[p]) = Q(F [p]), and that we have as-
sumed that K.Q(F [p]) = Ka,b.Q(E[p]). Now, we have concrete descriptions of
the maps, by

δ(Pa,b) : σ 7→ σ

(
1
p
· Pa,b

)
− 1
p
· Pa,b

δ(R) : σ 7→ σ

(
1
p
·R
)
− 1
p
·R,

and the Galois correspondence implies that the subgroupsGK.Q(F [p]) andGKa,b.Q(E[p])

of GQ(E[p])(= GQ(F [p])) are equal. These are the subgroups fixing 1
p · R and

1
p · Pa,b, respectively. As elements of Hom(GQ(F [p]), F [p]), the maps δ(Pa,b) and
δ(R) are both functions on the cosets of GK.Q(F [p]). MISSING - This seems
pretty strong, but I’m not quite sure where to go from here. However, this
is pretty good cause to investigate whether it is possible that K.Q(F [p]) =
Ka,b.Q(E[p]).

The primes ramifying in Q(E[p]), i.e. those dividing Np, will ramify in the
compositums, so if the primes not dividing Np that ramify in K are the same
as those that ramify in Ka,b, this is strong evidence that the compositums may
be equal.

19

Chapter 4

Computations and Code

4.1 Computing E[n]

To compute E[n], the main tool is the division polynomial, which is defined
in terms of E and n, and whose roots are the x-coordinates of the points of
E[n]. Given an x-coordinate, the corresponding y-coordinate is one of two
solutions to a quadratic equation. For example, if the elliptic curve is presented
as y2 = x3 + ax + b, then the y coordinate is just one of the two square roots
of the right side when the x coordinate is plugged in. That is exactly what the
following function, using the new QQbar Sage class. For the group law functions,
see the appendix.

def compute_e_bracket_n(E, n):
f = E.division_polynomial(n)
x_coords = f.roots(ring=QQbar)
g = E.defining_polynomial()
y = polygen(QQbar,’y’)
points = []
for x in x_coords:

h = g(x[0],y,1)
rootsh = h.roots(ring=QQbar)
for root in rootsh:

points.append([x[0], root[0], QQbar(1)])
row1 = [[QQbar(0),QQbar(1),QQbar(0)]]
gen1 = points[0]
for i in xrange(1,n):

row1.append(group_law(E, row1[i-1], gen1))
output = [row1]
gen2 = [p for p in points if p not in row1][0]
for i in xrange(1,n):

row_i = []
summer = group_law_times_n(E, gen2, i)

20

for j in xrange(n):
row_i.append(group_law(E, summer, row1[j]))

output.append(row_i)
return output

4.2 Visualizing E[n]

E[n] is a set of points in projective space CP2, which can be difficult to visualize.
However each individual coordinate lives in the complex plane, and one of the
coordinates can be taken to be 1. Since the last coordinate is always 1 unless
the point is the identity of the curve, we plot the x coordinate in red, the y
coordinate in cyan, and connect the coordinates of the same curve by an edge.
It seems ad hoc, but the resulting plots can be enlightening. For example,
the plots at http://wiki.rlmiller.org/ModularIsogenies seem to indicate
a limiting process in the structure of E[n] for a fixed E as n increases.

The following implements that scheme.

def plot_e_bracket_n(E, n):
G = Graph()
positions = {}
xes = []
ys = []
En = []
for row in compute_e_bracket_n(E, n):

En += row
for i in xrange(len(En)):

p = En[i]
if p[2] == 0:

continue
G.add_edge(((i,0), (i,1)))
xes.append((i,0))
ys.append((i,1))
positions[(i,0)] = [p[0].real().n(),p[0].imag().n()]
positions[(i,1)] = [p[1].real().n(),p[1].imag().n()]

return G.plot(pos=positions, partition=[xes,ys], vertex_labels=False, vertex_size=10)

4.3 Detecting the Isomorphism

This is relatively simple code, since the Brauer-Nesbitt theorem does all the
lifting.

def exists_isogeny(E, F, ell, p):
N = lcm(E.conductor(), F.conductor())
for q in prime_range(2, N*ell/6+1):

if mod(p*N*ell, q) == 0:

21

continue
if mod(E.ap(q) - F.ap(q), p) != 0:

return False
return True

4.4 Computing the Isomorphism

This is probably the most interesting computation. Given a point P of E[n], we
can form the number field Q(P), which has several embeddings Q(P) ⊂ - Q.
Each of these embeddings corresponds to an actual choice of coordinates for
P— abstractly, the number field is just the quotient of a polynomial ring by a
polynomial, and the roots of that polynomial are algebraically indistinguishable.
If Q is a point of F [n] that P maps to, then the isomorphism Q(E[n]) ∼= Q(F [n])
restricts to an isomorphism Q(P) ∼= Q(Q), which we can exploit in the following
diagram:

Q Q

Q(P)
∪

6

∪

6

∼=- Q(Q)
∪

6

∪

6

The first thing to do is actually construct Q(P). We do so in a similar
manner to finding E[n], by utilizing the division polynomial, but notice the flaw
in the function: we only ever consider the first factor. This was an intentional
dodge, but in the computations I was working on, it never came up, so it never
got fixed.

def QQ_adjoin_P(E, n):
f = E.division_polynomial(n)
if not f.is_irreducible():

f = f.factor()[0][0]
f *= lcm([a.denom() for a in f.coeffs()])
x = polygen(QQ)
f_n = f.leading_coefficient()
d_f = f.degree()
f = (f_n)^(d_f-1)*f(x/f_n)
l.<x> = NumberField(f)
y = polygen(l)
g = E.defining_polynomial()(x/f_n,y,1)
if g.is_irreducible():

g *= lcm([a.denominator() for a in g.coeffs()])
g_n = g.leading_coefficient()
g = g_n*g(y/g_n) # degree 2
L.<y> = l.extension(g)

22

return L, x/f_n, y/g_n
else:

g = g.factor()[0][0]
return l, x/f_n, g.roots()[0][0]

Then we have the main function. Note again the ad hoc choice of when two
embeddings are equal, since we are actually working in C. This is like using
floating points instead of pairs of integers to express rational numbers– the times
involved with exact computations is prohibitive.

def find_the_map(E, F, n):
isogeny_known = False
for ell in prime_range(24):

if exists_isogeny(E, F, ell, n):
isogeny_known = True
break

if not isogeny_known:
return None

LE, xE, yE = QQ_adjoin_P(E, n)
LF, xF, yF = QQ_adjoin_P(F, n)
isomorphism = LE.embeddings(LF)[0]
E_points = LE.embeddings(CC)
F_points = LF.embeddings(CC)
map = []
for E_embedding in E_points:

print (E_embedding(xE), E_embedding(yE)) # the "E-point"
see where isomorphism sends this point
by seeing which embedding of F matches up
for F_embedding in F_points:

if abs(F_embedding(isomorphism(xE)) - E_embedding(xE)) < 0.01\
and abs(F_embedding(isomorphism(yE)) - E_embedding(yE)) < 0.01:

map.append (((E_embedding(xE), E_embedding(yE)),\
(F_embedding(xF), F_embedding(yF))))

return map

4.5 Visualizing the Isomorphism

Given the ability to in some way visualize the structures E[n], visualizing the
isomorphisms is essentially trivial. There are two examples at

http://wiki.rlmiller.org/VisualizingIsogenies

def animate_the_map(E, F, n):
map = find_the_map(E, F, n)
start = {}
end = {}
for i in xrange(len(map)):

23

start[i] = map[i][0]
end[i] = map[i][1]

plots = []
frames=60.0
for j in xrange(frames):

G = Graph()
xes = []
ys = []
pos = {}
for i in xrange(len(map)):

c = []
c.append((start[i][0]*j + end[i][0]*(frames-j-1))/(frames-1))
c.append((start[i][1]*j + end[i][1]*(frames-j-1))/(frames-1))
G.add_edge(((i,0), (i,1)))
xes.append((i,0))
ys.append((i,1))
pos[(i,0)] = [c[0].real(), c[0].imag()]
pos[(i,1)] = [c[1].real(), c[1].imag()]

plots.append(G.plot(pos=pos, partition=[xes,ys], \
vertex_labels=False, vertex_size=20))

a = animate([plots[0]]*5 + plots + [plots[-1]]*5, axes=True)
return a

4.6 Specific Isomorphisms

p = 3
for E in cremona_optimal_curves(range(389,600)):

#if mod(E.ap(l)**2 - (l+1)**2, p) == 0:
if E.rank() == 2:

print E.cremona_label()
N = E.conductor()
for l in prime_range(24):

if mod(E.ap(l)**2 - (l+1)**2, p) == 0:
print ’searching for l =’,l,’isogenous curves’
for F in cremona_optimal_curves(N*l):

if F.rank() == 1 and exists_isogeny(E, F, l, p):
print F.cremona_label()
for arrow in find_the_map(E, F, p):

print ’x:’, arrow[0][0]
print ’ -->’, arrow[1][0]
print ’y:’, arrow[0][1]
print ’ -->’, arrow[1][1]
print ’---’

389a1

24

searching for l = 3 isogenous curves
searching for l = 5 isogenous curves
searching for l = 7 isogenous curves
searching for l = 17 isogenous curves
searching for l = 19 isogenous curves
433a1
searching for l = 3 isogenous curves
1299b1
x: -0.0832972061521252 - 4.89065187323140e-16*I

--> 26.9947984375809 + 3.62493168359436e-13*I
y: -0.958929557168226 + 4.42184597612172e-16*I

--> 94.5494283783160 + 2.18571840113652e-14*I

x: 0.715034173184315 - 1.36768528783611*I

--> -5.82274094491875 + 4.14500682085519*I
y: -0.365737680861901 + 2.41209641252603*I

--> 24.4805983223508 - 18.4436099598329*I

x: 0.715034173184306 + 1.36768528783611*I

--> -5.82274094491877 - 4.14500682085519*I
y: -0.365737680861900 - 2.41209641252603*I

--> 24.4805983223508 + 18.4436099598329*I

x: 0.715034173184316 + 1.36768528783609*I

--> -5.82274094491877 - 4.14500682085519*I
y: -0.349296492322414 + 1.04441112468994*I

--> -18.6578573774320 - 14.2986031389777*I

x: 0.715034173184314 - 1.36768528783609*I

--> -5.82274094491877 + 4.14500682085519*I
y: -0.349296492322414 - 1.04441112468994*I

--> -18.6578573774320 + 14.2986031389777*I

x: -1.68010447354982 - 3.17523785042795e-14*I

--> -15.6826498810727 + 3.77475828372553e-14*I
y: 0.840052236774915 + 1.74264996282730*I

--> 7.84132494053640 + 34.9365587005177*I

x: -1.68010447354985 - 5.88418203051333e-15*I

--> -15.6826498810727 + 1.19904086659517e-14*I
y: 0.840052236774919 - 1.74264996282730*I

--> 7.84132494053635 - 34.9365587005177*I

x: -0.0832972061521240 + 3.13640467093313e-15*I

--> 26.9947984375775 + 7.07432214568246e-13*I
y: 1.04222676332035 - 1.07260429134786e-15*I

25

--> -121.544226815893 - 7.67122990644701e-14*I

searching for l = 13 isogenous curves
searching for l = 17 isogenous curves
searching for l = 19 isogenous curves
446d1
searching for l = 7 isogenous curves
3122a1
x: 2.20842029485001 + 1.86281924050492e-15*I

--> 70.2915304558367 - 2.05823029771960e-10*I
y: -2.61391538316307 - 6.68995682128181e-16*I

--> 416.066770190395 - 3.45764569239556e-13*I

x: 1.02048677414838 + 0.509149810472889*I

--> -21.0936474236108 + 3.19552539475431*I
y: -1.22276581148438 + 0.697874682450763*I

--> 37.2904371881605 - 18.3107685349351*I

x: 1.02048677414838 - 0.509149810472890*I

--> -21.0936474236108 - 3.19552539475430*I
y: -1.22276581148438 - 0.697874682450764*I

--> 37.2904371881605 + 18.3107685349351*I

x: 1.02048677414838 + 0.509149810472891*I

--> -21.0936474236108 + 3.19552539475433*I
y: 0.202279037335998 - 1.20702449292365*I

--> -16.1967897645497 + 15.1152431401808*I

x: 1.02048677414838 - 0.509149810472894*I

--> -21.0936474236108 - 3.19552539475433*I
y: 0.202279037335998 + 1.20702449292366*I

--> -16.1967897645497 - 15.1152431401808*I

x: 2.20842029485002

--> 70.2915304567137 - 9.00893804403036e-11*I
y: 0.405495088313050

--> -486.358300646657 + 1.68424944772764e-13*I

x: -3.24939384314601 - 1.17439391544849e-12*I

--> -27.1042356090396 - 1.08801856413265e-14*I
y: 1.62469692157339 + 5.02297380793674*I

--> 13.5521178045198 - 33.5900984533761*I

x: -3.24939384314650 - 1.37401201527609e-12*I

--> -27.1042356090397 + 1.82076576038526e-14*I
y: 1.62469692157339 - 5.02297380793675*I

26

--> 13.5521178045198 + 33.5900984533761*I

563a1
searching for l = 3 isogenous curves
searching for l = 7 isogenous curves
searching for l = 13 isogenous curves
searching for l = 17 isogenous curves
searching for l = 23 isogenous curves
571b1
searching for l = 3 isogenous curves
searching for l = 7 isogenous curves
searching for l = 11 isogenous curves
6281a1
x: 0.373214754019828 + 3.94823306886335e-15*I

--> 36.1881265717571 - 3.44405452995275e-12*I
y: -1.47386602810255 + 1.98768473663071e-15*I

--> -170.606789622641 - 6.63173220042760e-14*I

x: 1.12810213627080 - 0.552334409759726*I

--> -14.8201889628355 + 4.95934380473844*I
y: -0.964272502698682 + 1.05225417093902*I

--> 29.4707962665893 + 13.6248876911133*I

x: 1.12810213627080 + 0.552334409759728*I

--> -14.8201889628355 - 4.95934380473843*I
y: -0.964272502698681 - 1.05225417093902*I

--> 29.4707962665893 - 13.6248876911133*I

x: -3.96275235989491 - 4.58799664926346e-13*I

--> -7.88108197938353 - 2.95596880306448e-15*I
y: -0.499999999999996 + 5.33144394446369*I

--> -0.500000000000005 - 28.3102089388883*I

x: -3.96275235989491 + 4.57689441901721e-13*I

--> -7.88108197938352 + 6.93889390390723e-16*I
y: -0.499999999999996 - 5.33144394446369*I

--> -0.500000000000001 + 28.3102089388883*I

x: 1.12810213627080 + 0.552334409759727*I

--> -14.8201889628354 - 4.95934380473839*I
y: -0.0357274973013203 + 1.05225417093902*I

--> -30.4707962665893 + 13.6248876911133*I

x: 1.12810213627080 - 0.552334409759727*I

--> -14.8201889628355 + 4.95934380473842*I
y: -0.0357274973013198 - 1.05225417093902*I

27

--> -30.4707962665893 - 13.6248876911133*I

x: 0.373214754019830

--> 36.1881265717551 - 1.37346836080256e-12*I
y: 0.473866028102545

--> 169.606789622641 + 2.64469516245661e-14*I

searching for l = 13 isogenous curves
searching for l = 19 isogenous curves

28

Chapter 5

Appendix

5.1 A Conversation with Carl Witty

[8:11pm] cwitty: You can’t do roots(ring=QQbar) yet, no matter what
the base ring is.
[8:11pm] cwitty: I would have thought that roots(ring=CIF) would
work, but it seems not to. Let me try to figure out why.
[8:12pm] cwitty: OK, simple workaround.
[8:13pm] cwitty: (Simple for me, a little complicated for you.
[8:13pm] cwitty: from sage.rings.polynomial.complex_roots import
complex_roots
[8:13pm] cwitty: complex_roots(p, min_prec=53)
[8:13pm] cwitty: That should work if p is in QQbar[’x’].
[8:13pm] cwitty: Then you can take the results and construct a new
QQbar element.
[8:14pm] rlm: does the constructor use LLL?
[8:14pm] cwitty: No.
[8:14pm] rlm: what does complex_roots return?
[8:15pm] cwitty: complex_roots returns the same thing that
.roots(ring=CIF) does: roots as complex intervals, with
multiplicities.
[8:15pm] rlm: oh, so it’s exact the whole time
[8:15pm] cwitty: It’ll be slow on QQbar inputs because it tries to
compute a squarefree decomposition.
[8:16pm] cwitty: If you know that p is already squarefree, you can
speed it up by adding skip_squarefree=True.
[8:16pm] cwitty: But if you say skip_squarefree=True and the
polynomial is not squarefree, then complex_roots will loop forever.

...

29

[8:21pm] cwitty: BTW, what polynomial degrees and coefficient
bitsizes are you dealing with?
[8:21pm] rlm: i start by finding the roots of a degree 4 polynomial
[8:21pm] rlm: then these become part of the coefficients on a
quadratic
[8:22pm] rlm: and solving the quadratic is taking a long time
[8:22pm] cwitty: Really? I would have thought that would be a
reasonable thing to do.
[8:23pm] cwitty: If you put an example script on sage.math (or paste
it in IRC, if it’s small enough) I’ll take a look.
[8:24pm] rlm: sage: E = EllipticCurve(’389a’)
[8:24pm] rlm: sage: f = E.division_polynomial(3); f
[8:24pm] rlm: 3*x^4 + 4*x^3 - 12*x^2 + 3*x - 3
[8:24pm] rlm: sage: roots = f.roots(ring=CIF)
[8:24pm] rlm: sage: f = E.defining_polynomial()
[8:24pm] rlm: sage: y = polygen(QQbar)
[8:24pm] rlm: sage: g = f(x_coord[0],y,3)
[8:24pm] rlm: i would like to factor g

...

[8:30pm] cwitty: sage: x_coord = QQbar.polynomial_root(f, roots[2][0])
[8:30pm] cwitty: sage: f = E.defining_polynomial()
[8:30pm] cwitty: sage: y = polygen(QQbar)
[8:30pm] cwitty: sage: g = f(x_coord,y,3)
[8:31pm] cwitty: sage: rootsg = complex_roots(g)
[8:31pm] cwitty: sage: y_coord = QQbar.polynomial_root(g, rootsg[1][0])
[8:32pm] cwitty: And just to show off that the result really is an
exact number:
[8:32pm] cwitty: sage: y_coord.minpoly()
[8:32pm] cwitty: x^8 + 12*x^7 + 3511/81*x^6 + 109/9*x^5 - 8435/27*x^4 - 8299/9*x^3 - 32456/27*x^2 - 6761/9*x - 71131/81
[8:32pm] rlm: hooray
[8:33pm] cwitty: sage: \%timeit complex_roots(g)
[8:33pm] cwitty: 10 loops, best of 3: 19.8 ms per loop
[8:33pm] cwitty: sage: \%timeit complex_roots(g, skip_squarefree=True)
[8:33pm] cwitty: 100 loops, best of 3: 2.58 ms per loop
[8:34pm] cwitty: sage: ComplexField(500)(y_coord)
[8:34pm] cwitty: 0.05171026849179881179298364395268079790690284334
751631130827660731238158814702944380954999682236194233911538078772
32888715311138011312101881282680264077 -
0.9398446925171662144546142797979621127747806957807649583336804748
743027172916820660586860179164010564009223515765494548833791366177
59554970424388611456*I
[8:34pm] rlm: applause
[8:35pm] cwitty: Thank you, thank you.

30

...

[8:39pm] cwitty: Is that the highest polynomial degree you need?
Unfortunately, it’s likely to be much slower with slightly higher
degrees.
[8:42pm] rlm: actually, there is no need to be perfectly exact
[8:42pm] rlm: i just want to study a group action on a finite set of
points
[8:43pm] cwitty: So you don’t need to test for equality?
[8:43pm] rlm: nope
[8:44pm] cwitty: Then AFAIK, you should be able to avoid exact
computation altogether. Just be careful about which operations you
use.
[8:44pm] rlm: do everything over CIF?
[8:44pm] cwitty: Always use skip_squarefree=True, for example (and
hope that the polynomials really are squarefree.)
[8:45pm] cwitty: Unfortunately, complex_roots() doesn’t work with
CIF inputs.

...

[8:47pm] cwitty: Well, CIF and QQbar both have guarantees that if
you use them right, you’re guaranteed to get a right answer.
[8:47pm] cwitty: With CIF the guarantees are much weaker, because
the "right answer" might be a really huge interval.
[8:48pm] cwitty: But with CC, you need to understand floating-point
rounding and the numpy and Pari root-finding routines to be sure
that your answer is meaningful.
[8:48pm] rlm: well, i need to know what the galois group does to
this finite set of coordinates
[8:48pm] rlm: it’ll permute them, so...
[8:49pm] rlm: seems like I could just find the closest point
[8:49pm] cwitty: Probably.
[8:49pm] cwitty: Do you know the coordinates now? (Do you know that
the coordinates never have a pair that’s very close together?)
[8:50pm] rlm: well, i’m going to be doing this for a whole
collection of examples, so it is probably something where they may
sometimes get close, but usually they won’t
[8:51pm] cwitty: You could try something like finding the closest
point, and then checking the ratio of (distance to closest point) /
(distance to second-closest point).
[8:51pm] cwitty: And give up with an error if that number isn’t
tiny.
[8:52pm] cwitty: That should be pretty safe; and if you ever get an
error, then you redo that particular example with CIF or with QQbar.
[8:53pm] rlm: What’s the precision of a root of a polynomial over

31

CC?
[8:53pm] cwitty: CC = ComplexField(53), so about 53 bits. But you
could also use ComplexField(200), or whatever.
[8:54pm] cwitty: For precision 53 or less (so including CC), we use
numpy’s root-finding routines.
[8:54pm] cwitty: For higher precision, we use Pari.
[8:54pm] rlm: I thought we had a discussion before about roots of a
polynomial losing a lot of precision?
[8:54pm] rlm: Was that in the case of multiplicities?
[8:54pm] cwitty: The example that people were using was in case of
multiplicities, yes.
[8:55pm] cwitty: It depends on the polynomial. High-degree
polynomials are bad; multiple roots are bad; ...
[8:56pm] cwitty: Wilkinson’s polynomial (http://en.wikipedia.org
wiki/Wilkinson\%27s_polynomial) is bad.
[8:56pm] rlm: A bad boy, like Z/2Z.
[8:56pm] rlm: So for a separable polynomial, is there an estimate of
how bad, in terms of the degree?
[8:57pm] cwitty: In any of these cases, tiny errors in the
polynomial coefficients (which are inevitable, when dealing with
floating point) can make large errors in the final root locations.
[8:58pm] cwitty: You can’t just look at the degree; you also need to
look at how close the roots are to each other, and in what sort of
pattern.
[8:58pm] rlm: by the way, do you mind if I include some of this
discussion in a number theory project i’m doing for william?
[8:58pm] cwitty: There’s actually a discussion of the topic in that
Wikipedia article on Wilkinson’s polynomial.
[8:59pm] cwitty: Go ahead.
[8:59pm] rlm: That is a good article.
[9:02pm] rlm: Let’s say I have a polynomial defined over CC, and I
find its roots. Is there any way I can get a guarantee on how
accurate it is?
[9:02pm] cwitty: For my current project, I want guaranteed answers;
which is why I did the real interval wrapper, and AA (the real
counterpart to QQbar).
[9:03pm] cwitty: I don’t know of a good way to do that. (So I
implemented a really cheesy, fairly inefficient method for
complex_roots.py.)
[9:04pm] cwitty: By CC, do you mean the mathematical domain, or do
you mean the Sage implementation (using finite-precision floating
point)?
[9:04pm] rlm: The implementation, with precision n.
[9:04pm] cwitty: If the latter, you would need at the very least
some sort of bound on how far away your coefficients were from the
true coefficients.

32

[9:05pm] rlm: The coefficients start out exact, and then their
accuracy would depend on the root finding.
[9:06pm] cwitty: roots(ring=ComplexField(n)), for n>53, uses Pari’s
polroots.
[9:06pm] cwitty: The polroots documentation says:
[9:06pm] cwitty: "Barring bugs, it
[9:06pm] cwitty: is guaranteed to converge and to give the roots to
the required accuracy."
[9:06pm] cwitty: But I don’t know what that means. Are you supposed
to be able to trust every bit of the result?
[9:06pm] cwitty: Because I don’t believe that.
[9:07pm] rlm: "It is better not to question the internals of a
program as complicated as Mathematica."
[9:07pm] cwitty: You know, I really don’t know that much about how
to guarantee the accuracy of floating-point computations.
[9:08pm] cwitty: (If you’ve read the Wikipedia article on
Wilkinson’s polynomial, then you know about as much as I do about
numerical stability for medium-degree polynomial root finding, for
instance.)
[9:09pm] cwitty: That’s why I use intervals, is so I don’t have to
think about proving bounds on rounding errors.
[9:09pm] rlm: Actually I misspoke before.
[9:10pm] rlm: I’ll mostly be working with p=3, so I think that my
polynomials will be mostly degree 8 or 9.
[9:10pm] rlm: And then solving quadratics defined in terms of their
roots.
[9:11pm] cwitty: In that case, QQbar will probably be fast enough;
and if not, a careful mix of QQbar and CIF probably will be.

5.2 New and Improved, Wheel

These functions were written, based on the rules in [8], before the author became
familiar with the native syntax:

sage: E = EllipticCurve(’389a1’)
sage: P1, P2 = E.gens()
sage: 3*P1 - 2*P2
(-21866/22801 : -6834807/3442951 : 1)

sage: def group_law_minus(E, P):
... x, y, z = P
... if z == 0: return [x, y, z]
... return [x, -y - E.a1()*x - E.a3(), 1]
sage: def group_law(E, P1, P2):
... x_1, y_1, z_1 = P1; x_2, y_2, z_2 = P2

33

... if P1 == [0,1,0]: return P2

... if P2 == [0,1,0]: return P1

... if x_1 == x_2:

... if y_1 + y_2 + E.a1()*x_2 + E.a3() == 0:

... return [0,1,0]

... lamb = (3*x_1*x_1 + 2*E.a2()*x_1 + E.a4() - E.a1()*y_1)/\

... (2*y_1 + E.a1()*x_1 + E.a3())

... nu = (-x_1*x_1*x_1 + E.a4()*x_1 + 2*E.a6() - E.a3()*y_1)/\

... (2*y_1 + E.a1()*x_1 + E.a3())

... else:

... lamb = (y_2 - y_1) / (x_2 - x_1)

... nu = (y_1*x_2 - x_1*y_2) / (x_2 - x_1)

... x_3 = lamb*lamb + E.a1()*lamb - E.a2() - x_1 - x_2

... y_3 = -(lamb + E.a1())*x_3 - nu - E.a3()

... return [x_3, y_3, 1]
sage: def group_law_times_n(E, P, n):
... Q = P
... if n == 0: return [0,1,0]
... for i in xrange(abs(n)-1):
... Q = group_law(E, Q, P)
... if n > 0: return Q
... if n < 0: return group_law_minus(E, Q)

34

Bibliography

[1] Charles W. Curtis and Irving Reiner. Representation Theory of Finite
Groups and Associative Algebras. Interscience Publishers, 1966.

[2] Fred Diamond and Jerry Shurman. A First Course in Modular Forms.
Springer, 2005.

[3] David S. Dummit and Richard M. Foote. Abstract Algebra. John Wiley &
Sons, Inc., 2004.

[4] Jürgen Neukirch. Class Field Theory. Springer-Verlag, 1986.

[5] Kenneth A. Ribet. Galois representations and modular forms. Bulletin of
the AMS, 32(4):375–402, 1995.

[6] Kenneth A. Ribet and William A. Stein. Lectures on serre’s conjectures.
Arithmetic Algebraic Geometry, 2001.

[7] Jean-Pierre Serre. Local Fields. Spinger-Verlag, 1979.

[8] Joseph Silverman. Arithmetic of Elliptic Curves. Springer-Verlag, 1986.

[9] William A. Stein. There are genus one curves over Q of every odd index.
Journal für die reine und angewandte Mathematik, 2002.

[10] Charles A. Weibel. An Introduction to Homological Algebra. Cambridge
University Press, 1995.

35

	Introduction
	Galois Representations
	Representation Theory
	Algebraic Field Extensions
	Galois Theory
	Modular Representation Theory
	p-adic Galois Representations

	Galois Cohomology
	Derived Functors
	Group Cohomology
	Changing Groups
	Elliptic Curves

	Computations and Code
	Computing E[n]
	Visualizing E[n]
	Detecting the Isomorphism
	Computing the Isomorphism
	Visualizing the Isomorphism
	Specific Isomorphisms

	Appendix
	A Conversation with Carl Witty
	New and Improved, Wheel

