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I. Introduction 
 
The primary goal of this paper is to introduce the reader to the concept of the zeta 
function of a number field and describe some applications of these functions in number 
theory. One of the most well known applications is the analytic class number formula 
which expresses a relationship between several invariants of a number field and the 
residue of the pole of the zeta function of the field. In particular, we will outline a proof 
of the class number formula and look at specific applications of the formula quadratic 
extensions of the rationals. 
 
II. Dirichlet Series and the Zeta Function of a Number Field 
This section assumes some knowledge of complex variables. Much of what is discussed 
here is found detailed in [Gam01]. 
Zeta functions of number fields occur as a special case in a more general class of 
functions known as Dirichlet series. Consequently, we will begin by introducing these 
series and describing some of their basic properties before discussing zeta functions.   

Definition: A Dirichlet series is a series of the form 
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sequence of complex numbers, and s is a complex variable. 
 
As is often the case when working with series, it is useful to find sets on which the series 
is known to converge. With this in mind, we will prove the following: 
 
Theorem: If a Dirichlet series converges absolutely for some 
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converges absolutely and uniformly for all complex numbers s i= !+ "  such that 
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    Proof:  Suppose we have a Dirichlet series 
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Now that we have a method for finding a half-plane in which a Dirichlet series 
converges, we want to define a notion of the largest region in which the series converges. 
 
Definition: The abscissa of absolute convergence of a Dirichlet series, denoted by

a
! , is 

defined to be the infimum of the set of all !  such that  | |
n
a n

!"# converges. 
 
There are several results concerning convergence of Dirichlet series, and we will simply 
state one of them. 
Theorem:  

a
!  is unique and the series converges absolutely when 

0
! > !  and unformily 

on any compact subset of this region. Furthermore,
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Example: The well known Riemann zeta function given by 
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series with 
n
a = 1 for all n and 

a
! =1.  

Before defining the zeta function of a number field, we want to make note of one other 
application of Dirichlet series to number theory. 
Example: The Prime Number Theorem: The function ( )x! defined to be the number of 
primes less than or equal to x behaves asymptotically like / log( )x x  as x!" . In order to 
prove the theorem, one may consider the Dirichlet series log / s

p

p p! where the sum is 

taken over all primes p. We will not prove the statement here; however, the reader may 
refer to [Gam01] for detailed discussion and proof.  
 

-------------- 
 
Definition: The zeta function of a number field K is defined to be 
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Where ( )
K
a n  denotes the number of ideals of K with norm n.  

The reason we have selected this definition is that we can clearly see here that ( )
K
s! is a 

Dirichlet series; however, we will immediately make the following observation: 
Observation: ( ) s

K
s N

!

"

# = "$  where the sum is over all integral ideals of K and NI 

denotes the norm of the ideal I. Furthermore, using Euler products, we may also write  
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 where the product is taken over all prime ideals. 

Example: As a somewhat trivial example, we note that 
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function of the rationals is the Riemann zeta function.  
 



III. The Class Number Formula 
 
Before stating the class number formula, we need the following definitions: 
For a number field K, let 

1
r  denote the number of real embeddings of K, and similarly, let 

2
r  denote the number of pairs of complex conjugate embeddings. As usual, 

K
h represents 

the class number of K and 
K
D the discriminant of the field. We will define 

K
! to be the 

number of roots of unity in K. Finally, we make one last definition: 
Definition: First consider the matrix whose ijth entry is log | |j

i i
N u  where { }

i
u is a set of 

generators for the group of units modulo the roots of unity and j

i
u is the image of 

i
u  

under an embedding of K into the complex numbers. (Thus the matrix in question is 
1 2

1r r+ !  by 
1 2
r r+  dimensional where we only consider one of each of the pairs of 

complex conjugate embeddings). Then the regulator of the number field K, denoted here 
by R, is the determinant of the submatrix obtained by deleting any single column of the 
matrix. 
It can be shown that the value of the regulator is independent of which column is 
selected. 
Theorem: (The Class Number Formula): For a number field K, ( )

K
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complex numbers s such that ! >1. Furthermore, at s=1 the function has a simple pole 
with residue given by 
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Outline of Proof: The outline given here is based on the detailed proof given by [Siv05] 
and that found in [FT93]. 
The proof relies on the following lemmas: 
 
Lemma 1: Suppose that C is a cone in n

R and F is a function from C to +
R  such that 

( ) ( )n
F ax a F x= when x C! and a +

!R  and the set { | ( ) 1}S x C F x= ! "  is bounded 
with positive volume V. If L  is a lattice in n

R with volume L then the following series 
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Furthermore, ,
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Thus the defined function has residue equal to the volume of S divided by the volume of 
the lattice at the point s=1.  
 
To state the next lemma, we need to make a choice of a specific cone C. For points 
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= where the first 
1
r coordinates are real and the remaining coordinates 

are complex, we may define a function ( )l x that maps x to a linear combination of the 



images of the 
i
u (as in the definition of the regulator) under the embeddings of K (see 

[FT93] and [Siv05]). 
Then we want to define our cone to be the set of x with nonzero norm such that the 
coefficients of the linear combination ( )l x are nonnegative and strictly less than one and 

such that 
1
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With C defined in this way, we state our second lemma: 
Lemma 2: If A! is defined to be the set of all associates of ! (i.e. elements that differ 
from ! by a unit), then exactly one element of A! has image in C under than map l . 
 
So far, we may make the following steps toward the result in the class number formula: 
The recall that we may write the zeta function of a number field as ( ) s
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Then equivalently, we may break this into a double sum where the outer sum is taken 
over ideal classes in the class group 

K
C and the inner sum is taken over all ideals in the 

given class. i.e. ( )
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. It is clear that these two representations are equal.  

Now if we select J such that JI is a principal ideal for all I in the classR  (i.e. choose J to 
be in -1

R ) then we may write the inner sum as: 
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Where B is the set of 
1 1 21( ,... ,..., )
r r r
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= (as above) with x=sig(b) for some b 
The idea here is to use the second lemma to write this sum as  
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Where the lattice L is taken to be the set of all 
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=  such that x=sig(b) 
for some b in the ideal J. 
The proof then proceeds by showing that  L, the volume of the lattice, is given by 
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applying the first lemma to the summation above yields the class number formula. 
As noted in [FT93], we can also state the class number formula in terms of another 
property of number fields. We have the following theorem: 

Theorem: 
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K
M denotes the number of ideals in the ring of 

integers of K with absolute norm less than x. 
 

--------------- 
 
As an application of the class number formula, we consider specifically the case of 
quadratic extensions. We have the following theorem from[AW04]: 



Theorem: Let ( )K m=Q where m is a squarefree integer. If p is a rational prime and 

( )
m

p
denotes the Legendre symbol of m mod p then: 

(a) If p>2 and ( )
m

p
=1 then (p) splits as a product of two primes. 

(b) If p>2 and p|m then (p) is the square of some prime ideal. 

(c) If p>2 and  ( )
m

p
=-1 then (p) is inert (prime in the ring of integers).  

Using this result together with the theory of L-series, we find that we can write the zeta 
function of a quadratic number field as the product of the Riemann zeta function with the 
L-series of the field. Since the residue of the pole of the Riemann zeta function is known 
to be one, the problem reduces to finding the value of the L-series at one. 
 
One of the problems frequently encountered in applying the class number formula is that 
the regulator of a number field can be quite difficult to calculate (even in some quadratic 
extensions); however, the formula provides a very elegant way to connect several of the 
most important quantities associated to a number field.  
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