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1 Introduction

Many concepts from algebraic number theory–particularly those which rely
only on the fact that the ring of integersOK of a number field K is a Dedekind
domain–have direct geometric analogues on algebraic curves. In Section 2, we
will examine some of these analogues, such as unique factorization of ideals,
ramification, and class groups. We will then specialize to modular curves,
which are interesting to algebraic number theorists due to their relationship

1



with families of elliptic curves. Section 3 defines what modular curves are,
and Section 4 gives examples of Galois coverings of modular curves.

2 Function Fields of Curves and Analogies to

Number Fields

Recall that for K a number field, its ring of algebraic integers OK is a
Dedekind domain. Recall also that in a Dedekind domain R, every nonzero
prime ideal is maximal, every ideal has a unique (up to reordering of factors)
decomposition as a product of prime ideals, and every fractional ideal of R in
Frac(R) has an inverse. (Each of these, in fact, is equivalent to the statement
that R is a Dedekind domain [DF, Thm. 16.15].)

We next recall some results about nonsingular projective curves. For
details and proofs, see [Hart, §I.6]. Let C be a nonsingular projective curve
over an algebraically closed field k, and U = SpecR an affine open subset of
C. Then R is a noetherian ring of Krull dimension 1 over k which is integrally
closed in its field of fractions K(C), i.e. R is a Dedekind Domain. Moreover,
K(C) is a finitely generated field extension of k with transcendence degree
1, and up to isomorphism K(C) does not depend on the choice of U . We call
K(C) the function field of C. Every finitely generated field extension of k
with transcendence degree 1 is the function field of a nonsingular projective
curve over k, and up to isomorphism the correspondence C 7→ K(C) is 1-to-1.

Points of C are in bijection with discrete valuation rings of K(C) over k.
The DVR corresponding to a point p ∈ C is the local ring of p, denoted OC,p.
The local ring can be defined as follows: choose an open affine U = SpecR ⊂
C containing p, and let p be the prime ideal of R corresponding to p. Then
OC,p = Rp is the localization of R at p. We will denote the valuation on OC,p
by νp.

(If k is not algebraically closed, then the theory in this section still works,
provided we modify the categories we are considering slightly. On the curve
side, we restrict our attention to curves X on which the only globally defined
functions are constant, i.e. OX(X) = k. On the function field side, we
restrict to function fieldsK over k such that k is algebraically closed in K,
i.e. k is the set of elements of K which are algebraic over k. See [Lor, §VII.4]
for details.)

Since C is projective, we can embed C into some projective space via
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some ψ : C ↪→ PNk . Let I ⊂ k[x0, x1, . . . , xN ] = S be the homogeneous
ideal of ψ(C), and let g(r) = degk

(
S
I

)
r

be the dimension of the r-th graded
piece of the homogeneous coordinate ring S/I of ψ(C). Then there exists
a unique polynomial Pψ(C)(t) ∈ Z[t] such that for all sufficiently large r,
g(r) = Pψ(C)(r). We call Pψ(C) the Hilbert polynomial of ψ(C). We define
the genus g(C) of C to be 1− Pψ(C)(0). As the name suggests, the genus of
C does not depend on a choice of ψ. As we shall see, g(C) is an important
numerical invariant of C. When k = C, the genus defined here agrees with
the definition of genus of a Riemann surface as the number of “handles” of
the C. The only genus zero curve is P1

k.
In later sections of this paper, we will need to consider some singular

curves. If C is a singular projective curve, there exists a unique (up to
isomorphism) nonsingular projective curve C̃ (called the normalization of C)
for which there exists a surjection C̃ → C which induces an isomorphism
between dense open subsets of C̃ and C. When we refer in this paper to the
genus or function field of C, we will always mean the genus or function field
of C̃.

2.1 Morphisms between Curves

Let f : C → D be a dominant morphism between two nonsingular projective
curves. (In this context, the condition that f is dominant is equivalent to
the condition that the image of f is not a point.) Then f induces a k-
linear homomorphism φf : K(D) → K(C). Conversely, given any k-linear
homomorphism φ : K(D) → K(C), there exists a dominant morphism f :
C → D such that φ = φf . In other words, if we let C be the category whose
objects are nonsingular projective curves and whose morphisms are dominant
algebraic morphisms, then C is (contravariantly) equivalent to the category
whose objects are finitely-generated transcendence-degree-one extensions of
k with morphisms k-linear homomorphisms.

Note any k-linear homomorphism between two fields must be injective
(since its kernel is a proper ideal), so a dominant morphism of curves f :
C → D corresponds to an extension of fields K(D) ↪→ K(C). Further,
since both have transcendence degree 1 over k, the extension K(D) ↪→ K(C)
must be algebraic. If U = SpecR ⊂ D is an open affine subset of D, then
f−1U = SpecR, where R is the integral closure of R in K(C). Since the
extension of fields is algebraic, R is a finite R-module, and thus f is a finite
morphism. Finite morphisms are closed, so f(C) is closed in D. f(C) is
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also dense in D, so we must have that f(C) = D–i.e. f is surjective. In
other words, dominant morphisms of curves are coverings and correspond to
extensions of function fields.

Now if p ∈ U is a point corresponding to the prime ideal p ⊂ R, then
f−1(p) is the closed subset of V = f−1(U) defined by the ideal pR ⊂ R.
Since R is a Dedekind domain, we can factor pR uniquely as a product of
primes of R:

pR = pe11 pe22 · · · pegg (1)

Furthermore,
∑g

i=1 ei = [K(C) : K(D)]. (This result is [Hart, Pro. II.6.9].
The proof uses the Chinese Remainder Theorem, and is analogous to the
proof of [Stein, Thm. 9.2.2].)

2.2 Divisors on Curves

This result can be stated more elegantly in terms of divisors. A divisor on a
nonsingular curve D is a formal Z-linear sum of points. For p ∈ D, we will
use the notation [p] to denote the divisor corresponding to p. Any divisor can
then be written as E =

∑r
i=1 ci[xi] where ci ∈ Z and xi ∈ D. If all the points

xi are in U = SpecR and correspond to prime ideals qi, then E corresponds
to the fractional ideal

∏
qcii . The degree of E is

∑
ci.

To any nonzero rational function α ∈ K(C)∗, we can associate a divisor

(α) =
∑
p∈C

νp(α)[p] (2)

To gain intuition into this definition, we can think of the case k = C, where
this reduces to an analysis problem. If we regard α as a meromorphic function
on C, then νp(α) > 0 when α(p) = 0 (and in this case νp(α) is the order of
vanishing of α at p), and νp(α) < 0 when α has a pole at p (and in this case
−νp(α) is the order of the pole). If α has neither a zero or a pole at p, then
νp(α) = 0. Thus colloquially, (α) is the divisor of “zeroes minus poles” of α.
Such a divisor is called principal. Principal divisors all have degree zero, and
they form a subgroup of the group of divisors DivC on C. The quotient is
called the class group of C, and is denoted Cl(C).

(This definition of the class group–which applies in a much more gen-
eral context–agrees exactly with the definition of the class group Cl(OK) of
fractional ideals of the ring of integers of a number field.)
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If f : C → D is a morphism of nonsingular curves, and E is a divisor on
D, we can define a divisor f ∗E on C as follows: if p is a point in U = SpecR
corresponding to the prime ideal p as above, p splits in R as in Equation 1,
and if pi ∈ V = f−1U = SpecR are the points corresponding to pi, then

f ∗[p] =

g∑
i=1

ei[pi] (3)

Now we extend linearly:

f ∗
(

r∑
i=1

ci[xi]

)
=

r∑
i=1

cif
∗[xi] (4)

Then our result above says

deg f ∗E = [K(C) : K(D)] degE (5)

We will also call [K(C) : K(D)] the degree of f .

2.3 Galois Groups and Deck Transformations

Now σ ∈ Aut(K(C)/K(D)) induces an isomorphism gσ : C → C such that
f = f ◦ g. So elements of Aut(K(C)/K(D)) correspond to deck transforma-
tions of the covering C → D. Hence Aut(K(C)/K(D)) acts on each fiber of
f . As in the case of number fields, if K(C)/K(D) is Galois, then the action
is transitive on each fiber, and coefficients of the [pi] in f ∗[p] agree.

2.4 Ramification and Hurwitz’s Theorem

For simplicity in this section we will assume that k has characteristic zero.
For p ∈ D and f : C → D as above, write f ∗[p] =

∑g
q∈f−1(p) eq[q]. We

say f is ramified at q if eq > 1, and we call eq the ramification index of q.
f is ramified at only finitely many points, and so the ramification divisor
R =

∑
q∈C(eq − 1)[q] is well defined. Hurwitz’s Theorem states that

2g(C)− 2 = deg f (2g(D)− 2) + degR (6)

¿From this we can draw two immediate corollaries: the degree of R must be
even, and g(C) must be greater than or equal to g(D).
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Hurwitz’s Theorem relies on k being algebraically closed. If k is not
algebraically closed, it may be that not all of the ramification points are
defined over k. Thus when working over a non-algebraically closed field
one must be careful about fields of definition when analyzing ramification.
For example, for a covering of curves over Q, Hurwitz’s Theorem may not
hold, but after base-changing to a number field over which all ramification
is defined, the theorem will hold. We will see an example of this later. The
requirement that the characteristic of k is zero is stronger than necessary–as
long as the extension K(C)/K(D) is separable and the characteristic of k
does not divide any ramification index eq (in which case we say f is tamely
ramified) Hurwitz’s Theorem will still hold.

3 Modular Groups and Modular Curves

The curves about which we will be primarily concerned in the remainder of
this paper are modular curves. We will now give an overview of the definition
of these curves, and we will try to give a glimpse into why they are important
objects. For details, see [St]. Modular curves will a priori be curves defined
over k = C, although in fact they will be defined over Q as well. Roughly
speaking, a modular curve is a compactification of a quotient of the upper
half-plane H by an action of a congruence group.

One important class of congruence groups are the principal congruence
groups. These are defined as

Γ(N) =

{(
a b
c d

)
∈ PSL2(Z) |

(
a b
c d

)
∼=
(

1 0
0 1

)
(modN)

}

for N a positive integer called the level of the group. A general congruence
group is a subgroup of PSL2(R) commensurable to PSL2(Z) and containing
some principal congruence subgroup.

One of the most interesting classes of congruences subgroups for our pur-
poses is

Γ0(N) =

{(
a b
c d

)
∈ PSL2(Z) | c ∼= 0 (modN)

}

and for l | N , the subgroup Γ0(N) + l of PSL2(R) generated by Γ0(N) and

µl =

(
0
√
l

− 1√
l

0

)
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( µl is an Atkin-Lehner involution.) Note Γ0(1) = PSL2(Z).

Any

(
a b
c d

)
∈ PSL2(R) acts on H by

(
a b
c d

)
· τ =

aτ + b

cτ + d

The action extends to one on H = H∪ P1Q, and for any congruence group Υ,

the quotient H/Υ will be compact. In fact, it will be a projective algebraic
curve over C, albeit typically singular. This is what we mean by a modular
curve.

The modular curves which are quotients of Γ(N) we denote X(N); the
modular curves for Γ0(N) we callX0(N), and the modular curves for Γ0(N)+l
we call X0(N) + l.

In the case where a modular curve X = H/Υ has genus zero, its function
field is purely trancendental, and so we can write K(X) ' C(t). We call
t a hauptmodul for Υ. Choosing t corresponds to fixing an parametrization
P1C → X given by p 7→ t(p), and t becomes an affine parameter on P1. Of
course, since P1C has many automorphisms, choosing a hauptmodul involves
making a choice. Note in general X will be singular, so this parametrization
will not be an isomorphism, but it will be the normalization. In what follows,
we will often find it convenient to abuse notation and identify a modular
curve with its normalization. We will sometimes refer to these as a “singular
model” and a “nonsingular model” for the modular curve.

We can view t as a function from H → C which is invariant under the
action of Υ. Then, we can expand t in a Laurent series in the variable
q = e2πiτ , where τ is the natural parameter on H. This is called a q-series
expansion for t. q-series expansions for particular choices of hauptmoduls
have been worked out explicitly in the literature on this subject. See for
example [CN, Table 4]. By abuse of terminology, when X has genus zero, we
say Υ is a genus zero group.

If Υ ⊂ Υ′ are two congruence subgroups, then the identity map on H
induces a covering H/Υ → H/Υ′. For example, if M |N , then Γ0(N) ⊂
Γ0(M), and hence X0(N) covers X0(M).

3.1 Examples and Relationship with Elliptic Curves

For any τ ∈ H we can define an elliptic curve Eτ ' C/〈1, τ〉. So X0(1) '
P1C precisely parametrizes isomorphism classes of elliptic curves (together
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with one other point–the orbit P1Q–corresponding to a singular curve). The
standard choice of hauptmodul on X0(1) is the classical elliptic invariant j.
The q-series for j begins

j(τ) =
1

q
+ 744 + 196884q + . . . (7)

If Eτ is put into Weierstrass form y2 = x3 + ax+ b, then

j(τ) =
1728 · 4a3

4a3 + 26b2
(8)

For a natural number n, the identity map on C induces an n to 1 map
Enτ → Eτ with kernel generated by τ . We call two elliptic curves C1, C2

n-isogenous if there exists a homomorphism between them with kernel cyclic
of order n (such a homomorphism is called an isogeny). Since the kernel
must be contained in the n-torsion subgroup of C1, we can always arrange
for an n-isogeny to be induced by the identity as above. I.E., C1 and C2

are n-isogenous if and only if C1 ' Eτ and C2 ' Enτ for some τ ∈ H. Let
τ ′ = − 1

nτ
, and note that Eτ ' Enτ ′ and Enτ ' Eτ ′ . Thus if there exists an

n-isogeny C1 → C2, there also exists a (dual) n-isogeny C2 → C1.
Now consider the map φn : H → P2 given by τ 7→ [j(τ), j(nτ), 1] =

[x, y, z]. We claim X0(n) is the closure of the image of φn. φn(τ) = φn(τ ′) if
and only if

τ ′ =
aτ + b

cτ + d
, nτ ′ =

αnτ + β

γnτ + δ

for some (
a b
c d

)
,

(
α β
γ δ

)
∈ SL2(Z)

Examining these equations, we see that
(
na nb
c d

)
= ±

(
nα β
nγ δ

)

which is possible if and only if τ ′ = aτ+b
cτ+d

, for

(
a b
c d

)
∈ Γ0(n) .

Thus X0(n) parametrizes (ordered) pairs of n-isogenous elliptic curves.
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The genus of X0(n) for many small n can be found in [Cohn]. The
equation Φn(x, y) = 0 for X0(n) on the affine patch z = 1 is the classical
modular equation for Γ0(n). Because it is symmetric in x and y, it can
be written as a polynomial in terms of the elementary symmetric functions
π = xy, σ = x+y. Let Φ+n

n (π, σ) be the corresponding polynomial such that
Φ+n
n (xy, x+ y) = Φn(x, y). Note that

(j(τ)j(nτ), j(τ) + j(nτ)) = (j(τ ′)j(nτ ′), j(τ ′) + j(nτ ′))

if and only if (j(τ), j(nτ)) = (j(τ ′), j(nτ ′) or (j(nτ ′), j(τ ′)), which will occur
if and only if τ ′ = aτ+b

cτ+d
for some

(
a b
c d

)
∈ Γ0(n) + n .

We may thus view Φ+n
n (π, σ) = 0 as the defining equation for X0(n) + n.

Hence we see that X0(n) + n parametrizes unordered pairs of n isogenous
elliptic curves.

The map (x, y) 7→ (xy, x+ y) is precisely the two-to-one covering coming
from the fact that Γ0(n) is an index 2 subgroup of Γ0(n). Ramification points
of this covering are points where x = y. These correspond to elliptic curves
which are n isogenous to themselves. Classically, such points were called
“singular moduli,” although this terminology can be somewhat confusing
due to the fact that although X0(n) is typically singular, these “singular
moduli” are not in general singular points of the curve. The number of such
“singular moduli” is determined by Hurwitz’s Theorem.

Note that instead of thinking of X0(n) as parametrizing pairs of elliptic
curves, we could instead think about X0(n) as parametrizing elliptic cuves
with marked cyclic subgroups of order n. In fact, most modular curves can
be thought about in this way, as parametrizing families of elliptic curves
with some extra structure. If X is the modular curve corresponding to some
Υ ⊂ PSL2(Z), and we think of X as parametrizing elliptic curves with some
extra structure, then the covering X → X0(1) is the “forgetful map” which
corresponds to forgetting the extra structure, and only considering the elliptic
curves themselves.
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4 Galois Coverings of Modular Curves

Although in principle one can calculate Φn and Φ+n
n to determine what X0(n)

and X0(n)+n are, in practice this is quite difficult and cumbersome, because
the coefficients in these defining polynomials grow very large very quickly. In
practice, a better way to study a given modular curve is often to use a galois
cover from this curve to another better-understood modular curve.

An especially useful case is when some Γ0(N)+l is genus zero. In this case,
since Γ0(N) has index 2 in Γ0(N)+l, we have a presentation of (a nonsingular
model for) X0(N) as a degree 2 cover of P1C (i.e. X0(N) is hyperelliptic).
Such a covering is necessarily galois, since K(X0(N)) is then isomorphic to
the splitting field of y2 − f(x) ∈ C(x)[y], where f(x) ∈ C[x] is squarefree.
It is a fact that when g(X0(N)) ≤ 5, X0(N) is hyperelliptic, although the
hyperelliptic presentation may not be induced by an Atkin-Lehner involution
(the first example where this does not occur is N = 37). The study of these
hyperelliptic presentations goes back to the work of Fricke in the 19th century,
and is still an active area of research today. Nice examples and explanation
can be found in [Cohn], [HM].

We conclude with an interesting example. In [HM], it is shown that
X0(28) + 7 has genus zero, and the galois covering X0(28) → X0(28) + 7

is ramified over ±√−7, 1±√−7
2

, −1±√−7
2

. Hence we see that the ramification

is defined over Q(
√−7), that X0(28) has hyperelliptic presentation y2 =

(x2 + 7)(x2 + x+ 2)(x2 − x+ 2), and by Hurwitz that X0(28) has genus 2.
We can also deduce from [HM] that the Atkin-Lehner involution µ28 is

given in this hyperelliptic presentation by x 7→ x+3
x−1

, y 7→ 8y
(x−1)3 . The galois

covering X0(28)→ X0(28) + 28 can then be defined by

π28 : (x, y) 7→ (x, y) + µ28((x, y)) =

(
x2 + 3

x− 1
,
y(x+ 1)(x2 − 4x+ 7)

(x− 1)3

)

Ramification will occur when µ28(x, y) = (x, y), i.e. for (x, y) such that

x =
x+ 3

x− 1

y =
8y

(x− 1)3

y2 = (x2 + 7)(x2 + x+ 2)(x2 − x+ 2)

The first equation implies x = 3,−1. If x = −1, the second equation becomes
y = −y, so then y = 0. But (−1, 0) doesn’t satisfy the third equation, so
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the only ramification occurs when x = 3. From the third equation, we see
that in these cases y = ±16

√
7. So by Hurwitz, since degR = 2, X0(28) + 28

must have genus 1. The ramification is defined over Q(
√

7). (So a good field
to work over when study modular curves of level 28 is Q(i,

√
7)).

We can also compute from these data a singular model for X0(28)+28 as
the image of π28. This can be done using elimination theory: over an affine
patch of X0(28) where x 6= 1, the graph of π28 is the variety defined by the
equations

0 = y2 − (x2 + 7)(x2 + x+ 2)(x2 − x+ 2) (9)

0 = (x− 1)u− (x2 + 3) (10)

0 = (x− 1)3v − y(x+ 1)(x2 − 4x+ 7) (11)

0 = t(x− 1)− 1 (12)

in A5 with coordinates (t, x, y, u, v). The image of π28 is the (closure of)
the image of this variety under the projection onto the A2 with coordinates
(u, v). So we need only eliminate t, x, y from the ideal generated by the right-
hand-sides of Equations 9, 10, 11. Doing so, we have that (a singular model
for) X0(28) + 28 has hyperelliptic presentation

v2 = (u− 4)2(u+ 1)(u+ 2)
(
u2 − u+ 2

)
(13)

A similar computation in the first nontrivial case ( N = 22) can be found
in [Elkies].
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