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1 Introduction

Let K be a number field of degree k and Oy its ring of integers. Then considering O as
a Z-module, the nicest possible case is that it has a basis of the form {1, o, a?, ..., a*"1}
for some a € O. If so, we call « a power generator and this basis a power basis and
say that K is monogenic. The existence of a power generator is a handy thing indeed,
simplifying arithmetic in Ok . For instance, if K is monogenic, then the task of factoring
pOg into prime ideals over Ok, a difficult task in general, reduces to factoring the
minimal polynomial of a over F,,, which is significantly easier.

Unfortunately, we cannot always find such an a. It is easy to see that all quadratic
fields are monogenic, if K = Q(v/D) where D is square-free, then Ok = Z[a] where

{Hﬁ if D=1 mod4
o =

VD if D=2,3 mod4

Even in the cubic case, however, things begin to get more complicated. While it is
easy to construct examples of monogenic cubic extensions, Dedekind showed that if
K = Q(a) where a is a root of f(z) = 23 + 2? — 22 + 8, then K cannot be monogenic
since the ideal (2) splits into three distinct prime ideals in Ok while there are only two
possible linear polynomials over Fs. In fact there are an infinite number of cyclic cubic
fields which have a power basis and also an infinite number which do not [2, 4] and
similarly for quartic fields.

As the degree of the extension grows, we are forced to place restrictions on the type
of field in consideration if we hope to obtain any results. The most commonly stud-
ied quartic extensions are the biquadratic ones, i.e. those of the form Q(\/c%, \/%)
Marie-Nicole Gras and Frangois Tanoé [5] showed that this field is monogenic if and
only if the following two conditions are satisfied:

i) 29m = 2°n 4 4(27%d), where § =,0, 1 is defined by mn = (-1)° mod 4
ii) the equation (u? —v2)%(2°m) — (u? + v?)%(2°n) = £1 has solutions in Z.

This allowed them to manually check all fields where m,n,d are small and demon-
strate that relatively few have power bases — 12% of those with discriminant under
4000.

This paucity of monogenic fields continues, at least in the known cases. The next
common restriction to take is the assumption that K is either abelian or cyclic. Here
again the main theorem is due to Gras [3], who proved that if n is relatively prime to
6, then there are only a finite number of monogenic abelian extensions of degree n. In
particular, if n is prime, her result shows that Ok has a power basis only in the special
case when K = Q(¢ + ¢) is the maximal real subfield of a cyclotomic field.

One general obstruction to monogenicity is the existence of an inessential discrim-
inant divisor, i.e. a prime which divides the discriminant of every element of Og but
does not divide the discriminant of Og. Since

Disc(«) = Disc(Z]a]) = Disc(Ok) - [Ok : Za]]



we see that if O = Z[a], then K cannot have any inessential discriminant divisors.
The converse, however, is not true. Pleasants constructed an infinite family of fields of
all orders k > 3 where k + 1 is prime, which have no inessential discriminant divisors
but yet are still non-monogenic [8].

Thus we see that the task of determining the monogenicity of a given field is quite
difficult. Relatively little is known for extensions of degree larger than six. Such theo-
rems as do exist are generally negative, that is they demonstrate that a certain family
of fields cannot be monogenic, so we do not have a large store of monogenic fields of
large degree or a way to prove that a given field has a power basis. The main result in
this direction is by Kalman Gyory [6]. Note that if « is a power generator, then so is
a —n for any n € Z. Call two such elements Z-equivalent or simply equivalent. Denote
by H(f) the maximum of the absolute values of the coefficients of f.

Theorem 1.1. Gyory (1976)
If K is a number field of degree k and discriminant Dy, then for all a € Ok there
exists a* € Ok which is equivalent to a with minimal polynomial my~ satisfying

3 3(k—1)(k—2)
H(mae) < exp | (58°)" (1D *2(1og |Dx])*) }

The set of such polynomials is finite, so the number of elements in Ok which are
roots of such polynomials must be finite. Thus in principal at least, we can test for
monogenicity simply by checking whether each of element in a finite set is a power
generator. In practice, however, this bound is already unusably huge for quadratic ex-
tensions and grows super exponentially. And though this bound has been considerably
improved over the last thirty years, there is still no feasible version of it.

2 Bremner’s Conjecture

While Gyory’s theorem is not practical as a monogenicity test, note the corollary that
there can be, up to equivalence as above, only a finite number of power generators «
for a given field K. Denote by S(K) the set of equivalence classes of elements such
that Ok = Z[a]. The theorem gives us an upper bound for |S(K)|, but in practice the
number is much smaller. In the quadratic case there are always two possibilities, so
|S(K)| = 2, while in almost all cubic cases |S(K)| < 12, as opposed to Gyory’s bound
which is several orders of magnitude larger than the size of universe in even these simple
cases. We thus look for a better way to compute S(K).

Of course if we could not in general even determine whether a field is monogenic, we
have little hope of being able to find all possible power generators for all possible fields.
Nagell spends an entire paper determining S(K) set for a single quartic example [7].
One fact that makes this task slightly easier is that once we have found a single power
generator, we can then use it in our search for others. Most algorithms then reduce to
solving a system of Diophantine equations, as in the method discussed below.

One particularly nice case is the cyclotomic fields K = Q(¢) where ( is a primitive
p-th root of unity for some prime p. Then we always have that K is monogenic, in fact
Ok = Z[¢]. Since there is more structure here than in the general case, we will now call
two elements of Ok equivalent if they differ by integer translation, Galois conjugation,
or multiplication by —1, i.e. a ~ a* if a =n £ o(a*) for some n € Z, o € Gal(Q(¢)/Q).
Since this refines the previous definition of Z—equivalence, Gyory’s result implies the



set of classes of equivalent power generators is finite. Bremner’s conjecture [1] is that it
consists of exactly two elements ( and n =1+ +¢*+...+ (P 1 =1/(1+).

Proposition 2.1. Z[n] = Z[(].

Proof. Since 7 is defined in terms of powers of ¢, we have trivially that Z[n] C Z[¢]. For
the reverse inclusion, note that 7 is a unit with inverse 1 + ¢, and hence the constant
term of the minimal polynomial is £1. Switching signs if necessary, we can therefore
find a; € Z such that 1+ a;n+ ...+ ap_1n?~' = 0. Multiplication by 1 + ¢ yields
1+¢=—(a1 +amm+asn’*+...+ap_1mP"2), and ¢ € ZZ[n). O

While 7 is equivalent to ¢ for k = 3, it is clear that this will never happen for larger
k. The initial cases p = 3,5,7, were known to Bremner and were the basis for his
conjecture. Leanne Robertson proved the conjecture for the cases p = 11,13, 19,23 and
gave a general criterion by which it could be checked for any regular prime [9]. The
main idea of the paper is to reduce to two separate cases, when « lies on the unit circle
and when it lies on the line Im z = 1/2 under the usual embedding of Q(¢) < C. This
follows from the following theorem.

Theorem 2.2. Robertson 2.4
If Z[a] = Z[(] and « is not equivalent to ¢, then a+a is equal to an odd integer and so
possibly by adding an integer to «a, we may assume that Im o = 1/2.

Proof. The main idea is to consider separately the cases when a+@ € Z and a+a ¢ Z.
So suppose a +a@ = k € Z. If k is even then
ata k
= 0 — —
2 2
is an element of Z[¢]. But this is impossible since @ has norm £p and so this element
will have norm +p/2P~1. Thus we must have that o+ @ is odd in this case. The second
case is more complicated, but is based on the idea that if « + @ ¢ Z, then a + @ ¢ Q
and so there exists an element o € Gal(Q(¢)/Q) which does not fix @ +@. Then we can
show

a—o(a)
=—¢R
V= ¢
A couple of short lemmas show that this implies
B Cb _ Ca
7= Cb _ C_b

for some a,b € Z and from this that « is equivalent to (. O

If we write a with respect to the basis {1,¢,...,(P71}, we get p norm equations
which must be simultaneously satisfied if « is to generate Z[(]. The previous theorem
reduces the number of integer indeterminants defining « from p to (p—1)/2. Considering
these equations led Robertson to the following sufficient criterion:

Theorem 2.3. Robertson 3.1
Let p be a regular prime, ¢ = (p — 1)/2, and g be a primitive root modulo p. Define

D(z1,...,24) to be the determinant of the matriz
L=pxqy —prg—1 —Pg—2 - P11
T1 l—prqy —prg—1 - —DpT2
T2 X1 1—pzy - —px3
Tg—1 Ty—2 Tg—3 -+ 1—pxg



Let U be the set of elements (z1,...,xq) € (Z/pZ)? which satisfy
D(x1,...,2¢) =1 mod P2,
and for 1 <i<g-—1

1— 31 1— 51 (1= (p—2)2
D 2 g)’xg( g.),...,xq it g, ),xq—si =1 mod p?
1—-g° 1—-g° 1—-g¢g°

where s; € 7./pZ is defined by 2P~1(1 — gP") = (1 + ps;)(1 — ¢*)? mod p?. If ¥ has
cardinality q then Bremmer’s conjecture is true for p.

This theorem gives us a feasible method to determine all power generators of a
cyclotomic field by solving ¢ polynomial equations in ¢ unknowns over a finite field.

Notice that since D is a polynomial in x1, ..., x4, and in each of the "twisted” forms we
have just multiplied each term by a constant, so the monomials which appear are the
same in all instances. We see that D(z1,...,24) =1 mod p, for all (z1,...,z,) since the

matrix is lower triangular mod p with 1’s along the diagonal. Thus instead of checking
whether D(x1,...,2,) =1 mod p?, it suffices to check whether (D(z1,...,2,)—1)/p =
0 mod p. Also note that if (z1,...,2,) is a solutions then (z1m?, zom?, ... x,m??) is
also a solution for any m € (Z/pZ)*. Since there are exactly ¢ = (p — 1)/2 squares in
(Z/pZ)*, this shows that ¢ always divides the order of .

Example 2.4. p =7

The matrix is then

1-— 71‘3 —7%‘2 —7$1
T 1-— 7.733 —7562
xro T 1-— 71‘3

and D(x1,29,23) = 1 — 7(3z3 — 3z129 + xi”) mod 72. This then reduces as above to
3x3 — 3r1w2 + 23 = 0 mod p. Here g = 3 and s; = 2,8 = 6, so computing the two
twisted forms, we get the following system of equations:

33:3—3331@—1—3:? =0 modp
3r3+3=0 modp

x37x1x27x13+150 mod p

The only simultaneous solutions in (Z/7Z)3 are (2,2,6),(1,4,6) and (4,1,6). Thus ¥
has cardinality 3 and so Bremner’s conjecture is true for p = 7.

3 Computations

We now seek an efficient method to quickly generate these equations and then find all
solutions. A link to SAGE code I wrote to do this task is given in the appendix. The
main difficulty is computing the solution set to the polynomials. Brute force methods
quickly become unusable as the number of equations to check grows like ¢ * p? while
the equations themselves are getting longer. One initial approach I made was to try to
exploit the fact that the same monomials appear in all equations. Thus, ignoring any
relations between the monomials, we can view the equations as elements in a I, vector
space whose basis is these monomials. We can then make the matrix of the system of
equations and row reduce it, finding another system of equations with the same solution



set but where substantially fewer monomials have a non-zero coefficient. Of course since
each equation will in general contain more monomials than unknowns, these matrices
will be wider than they are tall, so there is some choice as to which columns we wish to
row reduce along. Different choices may lead to systems of equations with quite different
number of terms remaining. Experimentally, I found that I could eliminate roughly half
the terms appearing in each equation in this manner. In this way I could compute up
to the case p = 13 in a reasonable amount of time. Further progress however, appeared
unlikely, as the running time was growing quickly. To push on, I learned that SAGE, via
MAGMA, has a very fast Groebner basis algorithm. Using this, I was able to finish the
p = 17,19, and 23 cases. The running time for each was roughly 5 seconds, 5 minutes,
and 9 hours respectively.

4 Conclusion

The results, as shown in the appendix, prove Bremner’s conjecture in the cases p =
3,5,7,13,19, and 23 since in each of these ¥ has the desired size. When p = 11 or 17,
however, we get more solutions than desired. Robertson’s criterion is not a necessary
one, though, as it may happen that more solutions occur modulo a prime than do in
the integers. In her paper, Robertson was able to show via an auxiliary calculation that
the conjecture is still true for p = 11 and stated but did not solve another, much more
complicated, set of equations whose solution set would determine the p = 17 case. In
fact, it appears that something strange is happening in the 17 case. The Groebner basis
in this case has 13 elements, while in all other cases it has exactly g elements. Also the
elements which appear are not nearly as nice. In the other cases, most of the elements
look like x; + p(zq—1,4), 50 we can solve for x; immediately once we have determined
the values z4—1 and z4. This corresponds to the fact that solutions appear in nice
families as noted previously. One other observation here is that if p — 1 is divisible by
an odd number, then one of the terms 1 — g3, 1 — ¢, ... 1 — ¢g4=2)% appearing in the
twists will be zero and so this particular twist will have substantially fewer terms than
others. But when p = 17, we have that p — 1 = 16 has no odd factors, hence all of the
equations are of full size.

Using the unspecialized Groebner basis algorithm can only take us so far, however.
If p = 23 took nine hours, I doubt that p = 29 would halt in less than a week and that
larger examples would be impossible. I believe that further progress could be made
by exploiting some of the recurring structure which occurs in the equations and their
solutions. One easy trick is that since we know solutions come in families as before, we
can pick two elements a,b € Z/pZ, one of which is a square and the other is not, and
assume that the first entry is always equal to one of these numbers, effectively reducing
the number of unknowns by one. Also, depending on how the Groebner basis algorithm
is running, it may be advantageous to " pre-optimize” the equations via linear algebra as
described above. Finally, since we know there is this nice structure to the solution sets,
we may be able to recover it, or at least the number of solutions, which is all we truly
care about, from the Groebner basis computed with respect to some other ordering than
the lexicographical one, which would substantially increase the speed of the algorithm.

We would also like to consider whether this method, or a similar one, can be applied
to prove Bremner’s conjecture in other cases. Robertson generalized her criterion in [10]
and [11] to deal with powers of 2 and prime powers generally. In the first case, she was
able to prove the conjecture for all powers, thus giving us the first infinite family for
which all power generators are known non-trivially. Rainiere apparently has a preprint
wherein he proves similar statement that all generators not equivalent to ¢ can be on



the line Im z = 1/2 for any cyclotomic field, raising the possibility that we could find a
criterion which applies in all cases.

Appendix

My SAGE code appears at https://sage.math.washington.edu:8101/home/pub/1635/.
The matrixes, polynomials, and Groebner bases can all be computed quickly by simply
entering the desired prime p and evaluating all fields. The results are listed below:

5 ={(3,2),(2,2)}
W7 ={(2,2,6),(1,4,6), (4,1,6)}

Uy = {(8,5,1,2,5),(10,3,9,6,5), (7,4,4,7,5), (2,1,5,8,5), (6,9, 3,10,5), (2,7,6,1,9),
(8,2,10,3,9), (6,8,8,4,9), (7,6,7,5,9), (10,10, 2,9,9)}

W3 ={(12,9,3,4,1,6), (4,1,3,10,3,6), (3,3, 10, 12,4, 6), (10,3, 3, 12,9, 6)

(9,1,10,10,10,6), (1,9,10,4,12,6)}

Uy, = {(4,16,8,2,6,6,0,3), (13,16,9,2,11,6,0,3), (15,4, 16, 15,3,7,0, 3),
(2,4,1,15,14,7,0,3), (8,13, 13, 15,5, 10,0,3), (9, 13,4, 15,12, 10,0, 3), (16, 1,2, 2,7, 11,0, 3),
(1,1,15,2,10,11,0,3),(7,1,0,10,3,7,1,6), (12,13,0,7,7, 11,2,6), (6, 16,0, 10,5, 10, 4, 6),
(3,4,0,7,6,6,8,6),(14,4,0,7,11,6,9,6), (11, 16,0, 10,12, 10, 13,6), (5,13,0, 7,10, 11, 15, 6),
(10,1,0,10,14,7,16,6)}

Wi = {(9,6,14,9,17,15,12,2,6), (6,9, 14,6, 16, 15,8,3,6), (7,17,2,1,1, 10,2, 8, 6)
(17,1,3,5,4,13,15,10,6), (11,16, 2, 7,11, 10, 14, 12, 6), (16,7, 3,17,9, 13, 13, 13,6),
(4,4,14,4,5,15,18,14,6), (5,11, 3, 16,6, 13, 10, 15,6), (1, 5,2, 11,7, 10, 3, 18, 6)}

Wys = {(5,7,8,13,19,17, 10,19, 19,5, 12), (20, 20, 6, 16, 21,11, 11, 10, 17, 7, 12),

(14,19,1,8,20, 15,22, 14,7,10,12), (19, 10, 4,4, 7,10, 21, 15, 11,11, 12),
(10,5,18,1,10,7,15,11,22,14,12), (17,11,2, 3,5, 14,5, 7, 10, 15, 12),
(15,17,9,18,17,19,20,22,20,17,12), (11,21, 16, 2, 22, 22, 19, 21, 14, 19, 12),
(7,22,3,12,15,20,7,20,5,20,12), (22,15,13,9, 14,5,17, 17, 15, 21, 12),
(21,14,12,6,11,21,14,5,21,22,12)}
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