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Discrete random variables take on only a countable number of values. The commonly used distributions
are included in SciPy and described in this document. Each discrete distribution can take one extra integer
parameter: L. The relationship between the general distribution and the standard one is

p (x) = p0 (x− L)

which allows for shifting of the input. When a distribution generator is initialized, the discrete distribution
can either specify the beginning and ending (integer) values a and b which must be such that

p0 (x) = 0 x < a or x > b

in which case, it is assumed that the pdf function is speci�ed on the integers a + mk ≤ b where k is a
non-negative integer (0, 1, 2, . . .) and m is a positive integer multiplier. Alternatively, the two lists xk and
p (xk) can be provided directly in which case a dictionary is set up internally to evaulate probabilities and
generate random variates.

0.1 Probability Mass Function (PMF)

The probability mass function of a random variable X is de�ned as the probability that the random variable
takes on a particular value.

p (xk) = P [X = xk]

This is also sometimes called the probability density function, although technically

f (x) =
∑
k

p (xk) δ (x− xk)

is the probability density function for a discrete distribution1.

0.2 Cumulative Distribution Function (CDF)

The cumulative distribution function is

F (x) = P [X ≤ x] =
∑
xk≤x

p (xk)

and is also useful to be able to compute. Note that

F (xk)− F (xk−1) = p (xk)

0.3 Survival Function

The survival function is just
S (x) = 1− F (x) = P [X > k]

the probability that the random variable is strictly larger than k.

1Note that we will be using p to represent the probability mass function and a parameter (a probability). The usage should
be obvious from context.
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0.4 Percent Point Function (Inverse CDF)

The percent point function is the inverse of the cumulative distribution function and is

G (q) = F−1 (q)

for discrete distributions, this must be modi�ed for cases where there is no xk such that F (xk) = q. In these
cases we choose G (q) to be the smallest value xk = G (q) for which F (xk) ≥ q. If q = 0 then we de�ne
G (0) = a− 1. This de�nition allows random variates to be de�ned in the same way as with continuous rv's
using the inverse cdf on a uniform distribution to generate random variates.

0.5 Inverse survival function

The inverse survival function is the inverse of the survival function

Z (α) = S−1 (α) = G (1− α)

and is thus the smallest non-negative integer k for which F (k) ≥ 1− α or the smallest non-negative integer
k for which S (k) ≤ α.

0.6 Hazard functions

If desired, the hazard function and the cumulative hazard function could be de�ned as

h (xk) =
p (xk)

1− F (xk)

and

H (x) =
∑
xk≤x

h (xk) =
∑
xk≤x

F (xk)− F (xk−1)
1− F (xk)

.

0.7 Moments

Non-central moments are de�ned using the PDF

µ′m = E [Xm] =
∑
k

xmk p (xk) .

Central moments are computed similarly µ = µ′1

µm = E
[
(X − µ)2

]
=

∑
k

(xk − µ)m p (xk)

=
m∑
k=0

(−1)m−k
(
m
k

)
µm−kµ′k

The mean is the �rst moment
µ = µ′1 = E [X] =

∑
k

xkp (xk)

the variance is the second central moment

µ2 = E
[
(X − µ)2

]
=
∑
xk

x2
kp (xk)− µ2.

Skewness is de�ned as
γ1 =

µ3

µ
3/2
2

while (Fisher) kurtosis is

γ2 =
µ4

µ2
2

− 3,

so that a normal distribution has a kurtosis of zero.
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0.8 Moment generating function

The moment generating funtion is de�ned as

MX (t) = E
[
eXt
]

=
∑
xk

exktp (xk)

Moments are found as the derivatives of the moment generating function evaluated at 0.

0.9 Fitting data

To �t data to a distribution, maximizing the likelihood function is common. Alternatively, some distributions
have well-known minimum variance unbiased estimators. These will be chosen by default, but the likelihood
function will always be available for minimizing.

If fi (k; θ) is the PDF of a random-variable where θ is a vector of parameters (e.g. L and S), then for a
collection of N independent samples from this distribution, the joint distribution the random vector k is

f (k; θ) =
N∏
i=1

fi (ki; θ) .

The maximum likelihood estimate of the parameters θ are the parameters which maximize this function
with x �xed and given by the data:

θ̂ = arg max
θ

f (k; θ)

= arg min
θ
lk (θ) .

Where

lk (θ) = −
N∑
i=1

log f (ki; θ)

= −N log f (ki; θ)

0.10 Standard notation for mean

We will use

y (x) =
1
N

N∑
i=1

y (xi)

where N should be clear from context.

0.11 Combinations

Note that
k! = k · (k − 1) · (k − 2) · · · · · 1 = Γ (k + 1)

and has special cases of

0! ≡ 1
k! ≡ 0 k < 0

and (
n
k

)
=

n!
(n− k)!k!

.

If n < 0 or k < 0 or k > n we de�ne

(
n
k

)
= 0
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1 Bernoulli

A Bernoulli random variable of parameter p takes one of only two values X = 0 or X = 1. The probability
of success (X = 1) is p, and the probability of failure (X = 0) is 1 − p. It can be thought of as a binomial
random variable with n = 1. The PMF is p (k) = 0 for k 6= 0, 1 and

p (k; p) =

{
1− p k = 0
p k = 1

F (x; p) =


0 x < 0
1− p 0 ≤ x < 1
1 1 ≤ x

G (q; p) =

{
0 0 ≤ q < 1− p
1 1− p ≤ q ≤ 1

µ = p

µ2 = p (1− p)

γ3 =
1− 2p√
p (1− p)

γ4 =
1− 6p (1− p)
p (1− p)

M (t) = 1− p
(
1− et

)
µ′m = p

h [X] = p log p+ (1− p) log (1− p)

2 Binomial

A binomial random variable with parameters (n, p) can be described as the sum of n independent Bernoulli
random variables of parameter p;

Y =
n∑
i=1

Xi.

Therefore, this random variable counts the number of successes in n independent trials of a random experi-
ment where the probability of success is p.

p (k;n, p) =
(
n
k

)
pk (1− p)n−k k ∈ {0, 1, . . . n} ,

F (x;n, p) =
∑
k≤x

(
n
k

)
pk (1− p)n−k = I1−p (n− bxc , bxc+ 1) x ≥ 0

where the incomplete beta integral is

Ix (a, b) =
Γ (a+ b)
Γ (a) Γ (b)

∫ x

0

ta−1 (1− t)b−1
dt.
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Now

µ = np

µ2 = np (1− p)

γ1 =
1− 2p√
np (1− p)

γ2 =
1− 6p (1− p)
np (1− p)

.

M (t) =
[
1− p

(
1− et

)]n
3 Boltzmann (truncated Planck)

p (k;N,λ) =
1− e−λ

1− e−λN
exp (−λk) k ∈ {0, 1, . . . , N − 1}

F (x;N,λ) =


0 x < 0

1−exp[−λ(bxc+1)]
1−exp(−λN) 0 ≤ x ≤ N − 1

1 x ≥ N − 1

G (q, λ) =
⌈
− 1
λ

log
[
1− q

(
1− e−λN

)]
− 1
⌉

De�ne z = e−λ

µ =
z

1− z
− NzN

1− zN

µ2 =
z

(1− z)2
− N2zN

(1− zN )2

γ1 =
z (1 + z)

(
1−zN

1−z

)3

−N3zN
(
1 + zN

)
[
z
(

1−zN

1−z

)2

−N2zN
]3/2

γ2 =
z
(
1 + 4z + z2

) (
1−zN

1−z

)4

−N4zN
(
1 + 4zN + z2N

)
[
z
(

1−zN

1−z

)2

−N2zN
]2

M (t) =
1− eN(t−λ)

1− et−λ
1− e−λ

1− e−λN

4 Planck (discrete exponential)

Named Planck because of its relationship to the black-body problem he solved.

p (k;λ) =
(
1− e−λ

)
e−λk kλ ≥ 0

F (x;λ) = 1− e−λ(bxc+1) xλ ≥ 0

G (q;λ) =
⌈
− 1
λ

log [1− q]− 1
⌉
.
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µ =
1

eλ − 1

µ2 =
e−λ

(1− e−λ)2

γ1 = 2 cosh
(
λ

2

)
γ2 = 4 + 2 cosh (λ)

M (t) =
1− e−λ

1− et−λ

h [X] =
λe−λ

1− e−λ
− log

(
1− e−λ

)
5 Poisson

The Poisson random variable counts the number of successes in n independent Bernoulli trials in the limit
as n → ∞ and p → 0 where the probability of success in each trial is p and np = λ ≥ 0 is a constant. It
can be used to approximate the Binomial random variable or in it's own right to count the number of events
that occur in the interval [0, t] for a process satisfying certain �sparsity� constraints. The functions are

p (k;λ) = e−λ
λk

k!
k ≥ 0,

F (x;λ) =
bxc∑
n=0

e−λ
λn

n!
=

1
Γ (bxc+ 1)

∫ ∞
λ

tbxce−tdt,

µ = λ

µ2 = λ

γ1 =
1√
λ

γ2 =
1
λ
.

M (t) = exp
[
λ
(
et − 1

)]
.

6 Geometric

The geometric random variable with parameter p ∈ (0, 1) can be de�ned as the number of trials required to
obtain a success where the probability of success on each trial is p. Thus,

p (k; p) = (1− p)k−1
p k ≥ 1

F (x; p) = 1− (1− p)bxc x ≥ 1

G (q; p) =
⌈

log (1− q)
log (1− p)

⌉
µ =

1
p

µ2 =
1− p
p2

γ1 =
2− p√
1− p

γ2 =
p2 − 6p+ 6

1− p
.
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M (t) =
p

e−t − (1− p)

7 Negative Binomial

The negative binomial random variable with parameters n and p ∈ (0, 1) can be de�ned as the number of
extra independent trials (beyond n) required to accumulate a total of n successes where the probability of
a success on each trial is p. Equivalently, this random variable is the number of failures encoutered while
accumulating n successes during independent trials of an experiment that succeeds with probability p. Thus,

p (k;n, p) =
(
k + n− 1
n− 1

)
pn (1− p)k k ≥ 0

F (x;n, p) =
bxc∑
i=0

(
i+ n− 1

i

)
pn (1− p)i x ≥ 0

= Ip (n, bxc+ 1) x ≥ 0

µ = n
1− p
p

µ2 = n
1− p
p2

γ1 =
2− p√
n (1− p)

γ2 =
p2 + 6 (1− p)
n (1− p)

.

Recall that Ip (a, b) is the incomplete beta integral.

8 Hypergeometric

The hypergeometric random variable with parameters (M,n,N) counts the number of �good� objects in a
sample of size N chosen without replacement from a population of M objects where n is the number of
�good� objects in the total population.

p (k;N,n,M) =

(
n
k

)(
M − n
N − k

)
(
M
N

) N − (M − n) ≤ k ≤ min (n,N)

F (x;N,n,M) =
bxc∑
k=0

(
m
k

)(
N −m
n− k

)
(
N
n

) ,

µ =
nN

M

µ2 =
nN (M − n) (M −N)

M2 (M − 1)

γ1 =
(M − 2n) (M − 2N)

M − 2

√
M − 1

nN (M −m) (M − n)

γ2 =
g (N,n,M)

nN (M − n) (M − 3) (M − 2) (N −M)
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where (de�ning m = M − n)

g (N,n,M) = m3 −m5 + 3m2n− 6m3n+m4n+ 3mn2

−12m2n2 + 8m3n2 + n3 − 6mn3 + 8m2n3

+mn4 − n5 − 6m3N + 6m4N + 18m2nN

−6m3nN + 18mn2N − 24m2n2N − 6n3N

−6mn3N + 6n4N + 6m2N2 − 6m3N2 − 24mnN2

+12m2nN2 + 6n2N2 + 12mn2N2 − 6n3N2.

9 Zipf (Zeta)

A random variable has the zeta distribution (also called the zipf distribution) with parameter α > 1 if it's
probability mass function is given by

p (k;α) =
1

ζ (α) kα
k ≥ 1

where

ζ (α) =
∞∑
n=1

1
nα

is the Riemann zeta function. Other functions of this distribution are

F (x;α) =
1

ζ (α)

bxc∑
k=1

1
kα

µ =
ζ1
ζ0

α > 2

µ2 =
ζ2ζ0 − ζ2

1

ζ2
0

α > 3

γ1 =
ζ3ζ

2
0 − 3ζ0ζ1ζ2 + 2ζ3

1

[ζ2ζ0 − ζ2
1 ]3/2

α > 4

γ2 =
ζ4ζ

3
0 − 4ζ3ζ1ζ2

0 + 12ζ2ζ2
1ζ0 − 6ζ4

1 − 3ζ2
2ζ

2
0

(ζ2ζ0 − ζ2
1 )2

.

M (t) =
Liα (et)
ζ (α)

where ζi = ζ (α− i) and Lin (z) is the nth polylogarithm function of z de�ned as

Lin (z) ≡
∞∑
k=1

zk

kn

µ′n = M (n) (t)
∣∣∣
t=0

=
Liα−n (et)
ζ (a)

∣∣∣∣
t=0

=
ζ (α− n)
ζ (α)
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10 Logarithmic (Log-Series, Series)

The logarimthic distribution with parameter p has a probability mass function with terms proportional to
the Taylor series expansion of log (1− p)

p (k; p) = − pk

k log (1− p)
k ≥ 1

F (x; p) = − 1
log (1− p)

bxc∑
k=1

pk

k
= 1 +

p1+bxcΦ (p, 1, 1 + bxc)
log (1− p)

where

Φ (z, s, a) =
∞∑
k=0

zk

(a+ k)s

is the Lerch Transcendent. Also de�ne r = log (1− p)

µ = − p

(1− p) r

µ2 = − p [p+ r]
(1− p)2 r2

γ1 = −2p2 + 3pr + (1 + p) r2

r (p+ r)
√
−p (p+ r)

r

γ2 = −
6p3 + 12p2r + p (4p+ 7) r2 +

(
p2 + 4p+ 1

)
r3

p (p+ r)2
.

M (t) = − 1
log (1− p)

∞∑
k=1

etkpk

k

=
log (1− pet)
log (1− p)

Thus,

µ′n = M (n) (t)
∣∣∣
t=0

=
Li1−n (pet)
log (1− p)

∣∣∣∣
t=0

= − Li1−n (p)
log (1− p)

.

11 Discrete Uniform (randint)

The discrete uniform distribution with parameters(a, b) constructs a random variable that has an equal
probability of being any one of the integers in the half-open range [a, b). If a is not given it is assumed to be
zero and the only parameter is b. Therefore,

p (k; a, b) =
1

b− a
a ≤ k < b

F (x; a, b) =
bxc − a
b− a

a ≤ x ≤ b

G (q; a, b) = dq (b− a) + ae

µ =
b+ a− 1

2

µ2 =
(b− a− 1) (b− a+ 1)

12
γ1 = 0

γ2 = −6
5

(b− a)2 + 1
(b− a− 1) (b− a+ 1)

.
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M (t) =
1

b− a

b−1∑
k=a

etk

=
ebt − eat

(b− a) (et − 1)

12 Discrete Laplacian

De�ned over all integers for a > 0

p (k) = tanh
(a

2

)
e−a|k|,

F (x) =

{
ea(bxc+1)

ea+1 bxc < 0,
1− e−abxc

ea+1 bxc ≥ 0.

G (q) =
{ ⌈

1
a log [q (ea + 1)]− 1

⌉
q < 1

1+e−a ,⌈
− 1
a log [(1− q) (1 + ea)]

⌉
q ≥ 1

1+e−a .

M (t) = tanh
(a

2

) ∞∑
k=−∞

etke−a|k|

= C

(
1 +

∞∑
k=1

e−(t+a)k +
∞∑
1

e(t−a)k

)

= tanh
(a

2

)(
1 +

e−(t+a)

1− e−(t+a)
+

et−a

1− et−a

)
=

tanh
(
a
2

)
sinh a

cosh a− cosh t
.

Thus,
µ′n = M (n) (0) = [1 + (−1)n]Li−n

(
e−a
)

where Li−n (z) is the polylogarithm function of order −n evaluated at z.

h [X] = − log
(

tanh
(a

2

))
+

a

sinh a

13 Discrete Gaussian*

De�ned for all µ and λ > 0 and k

p (k;µ, λ) =
1

Z (λ)
exp

[
−λ (k − µ)2

]
where

Z (λ) =
∞∑

k=−∞

exp
[
−λk2

]
µ = µ

µ2 = − ∂

∂λ
logZ (λ)

= G (λ) e−λ

where G (0)→∞ and G (∞)→ 2 with a minimum less than 2 near λ = 1

G (λ) =
1

Z (λ)

∞∑
k=−∞

k2 exp [−λ (k + 1) (k − 1)]
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