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Discrete random variables take on only a countable number of values. The commonly used distributions
are included in SciPy and described in this document. Each discrete distribution can take one extra integer
parameter: L. The relationship between the general distribution and the standard one is

p(z) =po(z—L)

which allows for shifting of the input. When a distribution generator is initialized, the discrete distribution
can either specify the beginning and ending (integer) values a and b which must be such that

po(x)=0 z<aorz>bh

in which case, it is assumed that the pdf function is specified on the integers a + mk < b where k is a
non-negative integer (0,1,2,...) and m is a positive integer multiplier. Alternatively, the two lists z; and
p (zx) can be provided directly in which case a dictionary is set up internally to evaulate probabilities and
generate random variates.

0.1 Probability Mass Function (PMF)

The probability mass function of a random variable X is defined as the probability that the random variable
takes on a particular value.
p(xr) = P[X = zy)

This is also sometimes called the probability density function, although technically

F@) =" "pxx)6(x— k)
k
is the probability density function for a discrete distribution®.

0.2 Cumulative Distribution Function (CDF)

The cumulative distribution function is

P@)=PX <a= Y p(w)

<z

and is also useful to be able to compute. Note that

F(xy) — F(xr-1) = p(zr)

0.3 Survival Function

The survival function is just
S(x)=1—F(z)=P[X > k]

the probability that the random variable is strictly larger than k.

INote that we will be using p to represent the probability mass function and a parameter (a probability). The usage should
be obvious from context.



0.4 Percent Point Function (Inverse CDF)
The percent point function is the inverse of the cumulative distribution function and is
G(g)=F"(a)

for discrete distributions, this must be modified for cases where there is no xy such that F' (x) = ¢. In these
cases we choose G (¢) to be the smallest value z; = G (q) for which F (x) > ¢. If ¢ = 0 then we define
G (0) = a — 1. This definition allows random variates to be defined in the same way as with continuous rv’s
using the inverse cdf on a uniform distribution to generate random variates.
0.5 Inverse survival function
The inverse survival function is the inverse of the survival function

Z(@)=8"1(a)=G1 - a)
and is thus the smallest non-negative integer k for which F' (k) > 1 — « or the smallest non-negative integer
k for which S (k) < «
0.6 Hazard functions

If desired, the hazard function and the cumulative hazard function could be defined as

p(zk)
hae) = 10— F]Exk)

and

0.7 Moments

Non-central moments are defined using the PDF
=FE[X™ = Zx}cnp xk)
Central moments are computed similarly p = p}

fim = E [(X - M)Q} = Th — (wx)

2
= ki_o ( )um "1

p=ph=EX] =Y awp(w)

The mean is the first moment

the variance is the second central moment
2
pp =B [(X = )] = adp () -
Tk

Skewness is defined as

_ M3
rYl - 3/2
Ha
while (Fisher) kurtosis is
Yo = & -3,
I

so that a normal distribution has a kurtosis of zero.



0.8 Moment generating function

The moment generating funtion is defined as
Mx (t)=E [e*] = Zem’“tp (z1)
Tk
Moments are found as the derivatives of the moment generating function evaluated at 0.

0.9 Fitting data

To fit data to a distribution, maximizing the likelihood function is common. Alternatively, some distributions
have well-known minimum variance unbiased estimators. These will be chosen by default, but the likelihood
function will always be available for minimizing.

If f; (k;0) is the PDF of a random-variable where 0 is a vector of parameters (e.g. L and .S), then for a
collection of N independent samples from this distribution, the joint distribution the random vector k is

N
.NKO)ZIIﬂ%ﬁ®~

The maximum likelihood estimate of the parameters @ are the parameters which maximize this function
with x fixed and given by the data:
6 = argmgxf (k; 0)

= arg Hgn Ik (0).

Where

Ik (0)

N
— > log f (ki; 0)

im1
= —Nlog f (k;;0)

0.10 Standard notation for mean

We will use

. 1 X

Vo9 = 7 Ll
where NV should be clear from context.

0.11 Combinations

Note that
K=k-(k-1)-(k=2)-----1=T(k+1)

and has special cases of

o =1
kKl = 0 k<O

Ifn<00rk;<00rk:>nwedeﬁne(z)zO

and



1 Bernoulli

A Bernoulli random variable of parameter p takes one of only two values X = 0 or X = 1. The probability
of success (X = 1) is p, and the probability of failure (X = 0) is 1 — p. It can be thought of as a binomial
random variable with n = 1. The PMF is p (k) = 0 for k£ # 0,1 and

1-p k=0
k; =
p(k;p) {p o1
0 x <0
F(x;p) = 1-p 0<z<1
1 1<z
0 0<g<1l—p
Glgp) =
1 1-p<gq<l1
w = Dp
p2 = p(l—p)
1—2p
V3
p(1—-p)
_ 1-6p(1-p)
Y4 =
p(1—p)

h[X] =plogp+ (1 —p)log(1—p)

2 Binomial

A binomial random variable with parameters (n,p) can be described as the sum of n independent Bernoulli
random variables of parameter p;
n
Y=Y X
i=1

Therefore, this random variable counts the number of successes in n independent trials of a random experi-
ment where the probability of success is p.

p(kyn,p) = <Z>pk(1—p)”kkE{O,l,...n},

P = 5 (4 )9 0-p = nn - el e +1) 220

k<z

where the incomplete beta integral is

I, (a,b) = m /Or (1 —t)" " at.



Now

po= np
p2 = np(l—p)
1—-2p

Nn o= e
np (1 —p)

_ 1-6p(1—p)

Yo = ———"
np (1 —p)

M) =[1-p(1=e)]"
3 Boltzmann (truncated Planck)

-

—e
0 z <0
—exp[—A(|x
F(mN,A) = ( =pelleltl o<z <N -1
1 r>N-—-1
1
G(g,\) = ’V—)\log[l—q(l—e_)‘N)]—l-‘
Define z = e
_ z NzN
Heo= 1—z 1—2N
z N2N
p2 = -

no= 3/2

2\ (1= \* 4 N N 2N
z(1+4z+z)( z ) — N*z (1+4z +z )

= () - o]

1— N(t—X) 1—e A
M(t): e (&

Y2 =

1—et=A 1—e MV

4 Planck (discrete exponential)

Named Planck because of its relationship to the black-body problem he solved.

pksA) = (1—eM)e™ kx>0

F(z;)) = 1—e M) gx>0
1

G(gN) = [—/\log[l—fﬂ—lw



1

e —1

T ey
A
y1 = 2cosh <2>

v2 = 4+2cosh(X)
1—e?
M(t) = 1 et—A

e~
h[X] = T —log(1—e ’\)

5 Poisson

The Poisson random variable counts the number of successes in n independent Bernoulli trials in the limit
as n — oo and p — 0 where the probability of success in each trial is p and np = XA > 0 is a constant. It
can be used to approximate the Binomial random variable or in it’s own right to count the number of events
that occur in the interval [0, ¢] for a process satisfying certain “sparsity” constraints. The functions are

)\k
p(k;A) = e_’\ﬁ k>0,
F(z;\) = ST N S il ety
@A = D e T T AR
wo= A
p2 = A
_ 1
"= \ﬁ
1
Y2 = 3

6 Geometric

The geometric random variable with parameter p € (0,1) can be defined as the number of trials required to
obtain a success where the probability of success on each trial is p. Thus,

plkip) = 1-p)'p k>1
F(zip) = 1-1-pt z>1
log (1 —q)
G(gp) = [
(@) log (1 —p)
1
po= =
P
1-p
'u =
2 p2
_ 2-p
M= Ty
p?—6p+6
Yo = .
1-p



7 Negative Binomial

The negative binomial random variable with parameters n and p € (0,1) can be defined as the number of
extra independent trials (beyond n) required to accumulate a total of n successes where the probability of
a success on each trial is p. Equivalently, this random variable is the number of failures encoutered while
accumulating n successes during independent trials of an experiment that succeeds with probability p. Thus,

p(k;n,p)

F (z;n,p)

M2

a!

Y2

k4+n-—1
n—1

>p”(1p)k k>0

le) ,
= (T ) rasw ez
1=0
= I,(n,|z]+1) x>0
1-p
= n— m——
p
1-p
n p2
2—p
n (1l —p)
p*+6(1—p)
n(1—p)

Recall that I, (a,b) is the incomplete beta integral.

8 Hypergeometric

The hypergeometric random variable with parameters (M, n, N) counts the number of “good” objects in a
sample of size N chosen without replacement from a population of M objects where n is the number of
“good” objects in the total population.

p (ks N,n, M)

F(x;N,n, M)

M2

Al

72

<|

nN (M —n)(M — N)
M2 (M —1)
(M —2n) (M —2N) M-1
M -2 nN (M —m) (M —n)
g(N,n, M)
nN (M —n)(M —-3)(M—2)(N—-M)




where (defining m = M —n)

g(N,n, M) = m?®—m®+3m?n — 6m3n +m*n + 3mn?

—12m?n? + 8m3n? + n3 — 6mn® + 8m?n?

+mn* = n® —6m3N 4+ 6m*N + 18m>*nN
—6m3nN + 18mn?N — 24m*n*N — 6n>N
—6mn®*N + 6n*N + 6m?N? — 6m3N? — 24mnN?
+12m*nN? + 6n*N? + 12mn*N? — 6n° N2,

9 Zipf (Zeta)

A random variable has the zeta distribution (also called the zipf distribution) with parameter o > 1 if it’s
probability mass function is given by

where

((a) = a
n=1

is the Riemann zeta function. Other functions of this distribution are

1 &

¢
no= % a>2
2
by = C2C0C§ Gi 0>3
(368 — 3CoCiCa +2¢3
7= a>4
' [C2€0 — Clz]g/z

CuGl — 4GsG1G8 + 12GoCPo — 6¢H — 3G3GE
(CaCo — C2)°

Li, (et)
C()

where (; = ¢ (o — i) and Li, (2) is the n'® polylogarithm function of z defined as

M) =

k=1
S L] C(a—n)
pn= MO0 = = | L= @)




10 Logarithmic (Log-Series, Series)

The logarimthic distribution with parameter p has a probability mass function with terms proportional to
the Taylor series expansion of log (1 — p)

p
p) = —— L k>
p(k;p) Foe(—p) *7
Lzl & 1+|x)
1 p p' T (p, 1,1+ |z])
F(x;p) = ———— — =1+
(=) log (1 —p) ; k log (1 —p)
where - .
z
‘P(z,s,a) = s
kZ:o (a+k)

is the Lerch Transcendent. Also define r = log (1 — p)

W P
(1=p)r
__ plp+r]
e (1—p)*r?
2p% +3pr + (1 +p)r°
! -
r(p+r)v/-pp+r)
6p° + 12p°r +p(dp+T)r? + (P +4p+ 1) 13
Y2 = - 3 .
p(p+r)
1 e etkpk
M) = -—
®) log (1 —p) I; k
log (1 — pe')
log (1 —p)
Thus,
. . .
,u; - M (t) _ Li;_, (pe') _ Li;—, (p) )
t=0  log(l—p)|,_, log (1 —p)

11 Discrete Uniform (randint)

The discrete uniform distribution with parameters(a,b) constructs a random variable that has an equal
probability of being any one of the integers in the half-open range [a, ). If a is not given it is assumed to be
zero and the only parameter is b. Therefore,

1
. — <
p(k7a‘ab) b_a a_k<b
F (z;a,b) = L?_iaa a<z<b
G(g;a,0) = [q(b—a)+al
b+a—1
mo= Y
 (b—a-1)(b—a+1)
H2 = 1
v = 0

6 (b—a)*+1
" 5(b—a—-1)(b—a+1)

72 =



1 b—1
M(t) = biaZetk
k=a

ebt _ eat
 (b—a)(et—1)
12 Discrete Laplacian
Defined over all integers for a > 0
p(k) = tanh (%) e~alkl
ealle]+D)
- x| <0,
F(z) = { ¢ ) =]
- (2] 20

Q

=

Q

S~—
|

{ [Tloglg (e + )] —1] ¢ < o=,
~Liogl(1—g) A +en)] g2 i

M (t) = tanh ethealkl
opsl
_ <1+ie t+a)k+z (t— a)k)

~ el a ) e (t+a) et—a
=t (5) (14 = + 1o

tanh (%) sinh a

cosha — cosht’

Thus,
=M™ (0) = [1+ (-1)"]Li_, (™)
where Li_,, (z) is the polylogarithm function of order —n evaluated at z.

h[X] = —log (tanh (%)) + =

sinh a

13 Discrete Gaussian®

Defined for all 4 and A > 0 and k

p (ks ) = ﬁ exp [<A (k — 1)’

where -
Z(\) = Z exp [—Ak?]
k=—oc0
po= n
0
pe = —grlogZ(d)
= G\)e

where G (0) — oo and G (00) — 2 with a minimum less than 2 near A =1

Z k2 exp [~ (k4 1) (k —1)]

k_foo
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