Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

1 of 15

480 -- 05-07-2008 floating point

Floating Point Arithmetic in Sage

A reference: What Every Computer Scientist Should Know About
Floating-Point Arithmetic, by David Goldberg (see
http://docs.sun.com/source/806-3568/ncg_goldberg.html).

Sage has a Plethora of Different Floating
Point Arithmetic Models

Python Types: float, complex, decimal
Native Sage Types: RDF, CDF, RQDF, CC, RR, RIF, CIF
Types in Systems Sage Includes: pari, maxima

Python Types

float: Python double-precision floats

From the Python docs: "Floating point numbers are implemented
using double in C. All bets on their precision are off unless you

happen to know the machine you are working with."
float?
<type 'float'>

a = float('12.93939"); a
12.93939

time for _ in xrange(1076): b = a*a
CPU time: 0.25 s, Wall time: 0.25 s

a”100

5/7/08 11:55 AM

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

1.5537469625197027e+111
a”300
Traceback (click to the left for traceback)

OverflowError: (34, 'Result too large')

1/float (0)
Traceback (click to the left for traceback)

ZeroDivisionError: float division

complex: Python double-precision complex

Much like Python floats. All bets on their precision are off unless

you happen to know the machine you are working with.
complex?

a = complex(-2.393,3.3049)

(-2.3929999999999998+3.30489999999999997)

a.real
-2.3929999999999998

a.imag
3.3048999999999999

a.conjugate()
(-2.3929999999999998-3.30489999999999997)

time for _ in xrange(1076): b = a*a
CPU time: 0.26 s, Wall time: 0.28 s

2of 15 5/7/08 11:55 AM

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

decimal: Python arbitrary precision floats

Decimal floating point has finite precision with arbitrarily large
bounds. From the Python docs: "The purpose of this module is to
support arithmetic using familiar "schoolhouse" rules and to avoid
some of the tricky representation issues associated with binary
floating point. The package is especially useful for financial
applications or for contexts where users have expectations that are at
odds with binary floating point (for instance, in binary floating
point, 1.00 % 0.1 gives 0.09999999999999995 instead of the
expected Decimal("0.00") returned by decimal floating point)." Here

are some examples of using the decimal module:

from decimal import *
setcontext (ExtendedContext)
Decimal (0)
Traceback (click to the left for traceback)

TypeError: Cannot convert 0 to Decimal

Decimal (int(0))
Decimal("0")

Decimal("1")
Decimal("1")

Decimal("-.0123")
Decimal("-0.0123")

Decimal('123456")
Decimal("123456")

Decimal("123.45e12345678901234567890")
Decimal("1.2345E+12345678901234567892")

Decimal("1.33") + Decimal("1.27")
Decimal("2.60")

Decimal("12.34") + Decimal("3.87") - Decimal("18.41")
Decimal("-2.20")

dig = Decimal('1l")
dig / Decimal('3")
Decimal("0.333333333")

C = getcontext()

3of 15 5/7/08 11:55 AM

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

C.prec = 18
dig / Decimal('3")
Decimal("0.333333333333333333")

I really do *NOT* like the Python builtin decimal module, at least

for real mathematics.

1. It 1s vastly slower even than Sage's RealField.

2. The output printing format is ugly.

3. It uses global contexts to determine how arithmetic works
instead of the idea of a parent field, which is an extremely

difficult and backward programming model for arithmetic.

4. It looks, feels, and works differently than the other Python
numeric types.

from decimal import *
setcontext (ExtendedContext)
a = Decimal('9.23903840923")

time for i in xrange(1076): b = a*a

CPU time: 32.51 s, Wall time: 33.83 s
a*a

Decimal("85.3598307")

aa = RR(a)
aa*aa
85.3598307272272

time for i in xrange(10”6): b = aa*aa
CPU time: 0.60 s, Wall time: 0.61 s

Native Sage Types

4 of 15

5/7/08 11:55 AM

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

RDF and CDF: Double Precision Sage Types

RDF and CDF are Sage's double precision real and complex number
types. Both are built on top of GSL types, where GSL is the Gnu
scientific library. They provide both arithmetic and lots of special
functions. The main reasons to use RDF and CDF in Sage are (1)
speed, (2) they fit well into the usual Sage structure of elements,
parents, etc. In particular, they work much much better with the rest
of Sage than Python floats. WARNING: Like with Python floats, a//
bets on their precision are off unless you happen to know the
machine you are working with.

Also, matrix algebra with matrices that have RDF and CDF entries
is very fast compared to RR and CC matrices.

RDF
Real Double Field

CDF
Complex Double Field
a = RDF(1.399); a
1.399
time for _ in xrange(1076): b = a*a
CPU time: 0.25 s, Wall time: 0.31 s
b = RDF.pi(); b
3.14159265359
a*b
4.39508812237
Let's compare the speed of RDF and Python floats (they are similar,
though Python is still a little faster)
timeit('a*b"')
625 loops, best of 3: 147 ns per loop
aa=float(a); bb=float(b)

timeit('aa*bb')
625 loops, best of 3: 133 ns per loop

5of 15 5/7/08 11:55 AM

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

timeit('a.sin()"')

625 loops, best of 3: 739 ns per loop
timeit('math.sin(aa)"')

625 loops, best of 3: 431 ns per loop

More than just arithmetic!!
R.<x> = RDF[]
R
Univariate Polynomial Ring in x over Real Double Field

f = R.random element(5); show(f)

0.0602196534944z° — 0.675014009648z* — 0.6253370107552° — 0.469194211969x% — 0.252

f.roots()
[(-1.18657304832, 1), (0.708720861278, 1), (12.1207083604, 1)]

plot(f,-5,12.2)

-500

I

-1000

-1500

r = random matrix(RDF,4); show(r)
0.554793328163 0.806681249876 0.855672544804 0.345503002004
0.275560503407 —0.767516885245 0.140715689923 —0.0672870712173
0.411936035159 —0.500777685361 —0.25129942636 —0.402880480964
—0.0771603151762 —0.102867639532 0.618852904735 —0.924382081638

show(r.charpoly())

6 of 15 5/7/08 11:55 AM

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

1.0z* 4 1.38840506508z° — 0.178664763023x> — 1.26500849771x — 0.559483646877

r.eigenspaces|()
[(0.934869625022, Vector space of degree 4 and dimension 1 over
Complex Double Field
User basis matrix:
[-0.78163648851 -0.195584588601 -0.592194261068
-0.00985016193641]), (-0.815028414943 + 0.446137143184*I, Vector
space of degree 4 and dimension 1 over Complex Double Field
User basis matrix:
[0.0954407885658 — 0.11522487684*1I
-0.697830743559 0.185183691163 + 0.462464655174*I -0.475373712645
0.128451600015*I]), (-0.815028414943 - 0.446137143184*I, Vector
space of degree 4 and dimension 1 over Complex Double Field
User basis matrix:
[0.0954407885658 + 0.11522487684*1I
-0.697830743559 0.185183691163 - 0.462464655174*I -0.475373712645
0.128451600015*I1), (-0.693217860214, Vector space of degree 4 and
dimension 1 over Complex Double Field
User basis matrix:
[0.0926455891765 -0.933148341712 0.316900596291 -0.142214553535])

Compare CDF and Python's complex type:

a = CDF(1,1); b = CDF(2,3.14)
aa = complex(a); bb = complex(b)

timeit('a*b') # this seems too slow (?)

625 loops, best of 3: 282 ns per loop
timeit('aa*bb')

625 loops, best of 3: 178 ns per loop
time for _ in xrange(1076): b = a*a

CPU time: 0.39 s, Wall time: 0.42 s

Note that RDF numbers can't be very big. This can and does cause
trouble in everyday calculations, at least for people like me.

7 of 15 5/7/08 11:55 AM

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print
a = RDF(10)
a”308
le+308

a”309
inf

RQDEF: Quaddouble

The web page is here: http://crd.lbl.gov/~dhbailey/mpdist/

1. The idea of quaddouble is that four doubles in a row gives
higher precision doubles.

2. It's a simple data structure created by computer scientists
(mainly Hida at Berkeley). It is easier than mpfr to use on
massively parallel computers and to extend the standard float
linear algebra libraries to work with quaddouble.

3. It is nowhere near as rigorous as MPFR -- it gives all kinds of
wrong answers in some cases in low order bits.

4. Overall it is not that much faster than MPFR. Special functions
are about twice as fast.

RODF
Real Quad Double Field
a = RQDF.pi(); a
3.141592653589793238462643383279502884197169399375105820974944590
time for in xrange(1076): b = a*a
CPU time: 0.67 s, Wall time: 0.70 s

a*a

8of 15 5/7/08 11:55 AM

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

9 of 15

9.869604401089358618834490999876151135313699407240790626413349361

compare with RR (mpfr)
a = RealField(212).pi(); a

3.14159265358979323846264338327950288419716939937510582097494459
time for _ in xrange(1076): b = a*a
CPU time: 0.75 s, Wall time: 0.84 s

RR: Real Multiprecision (built on MPFR)

Paul Zimmerman is the author of MPFR. This following description
is from the MPFR web page:

MPER (see http://www.mpfr.org/) is a portable library written in C
for arbitrary precision arithmetic on floating-point numbers. It is
based on the GNU MP library. It aims to extend the class of
floating-point numbers provided by the GNU MP library by a precise
semantics. The main differences with the mpf class from GNU MP
are:

 the mpfr code is portable, i.e. the result of any operation does
not depend (or should not) on the machine word size
mp bits per limb (32 or 64 on most machines);

« the precision in bits can be set exactly to any valid value for
each variable (including very small precision);

o mpfr provides the four rounding modes from the IEEE 754-1985
standard.

In particular, with a precision of 53 bits, mpfr should be able to
exactly reproduce all computations with double-precision machine
floating-point numbers (double type in C), except the default
exponent range is much wider and subnormal numbers are not
implemented but can be emulated.

5/7/08 11:55 AM

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

Sage and Magma are the only general purpose computer algebra
systems that use MPFR for their multiprecision floating point
arithmetic. In Sage MPFR is used under the hood to implement RR
and CC.

SUMMARY: Sage's RR and CC fields are awesome from a precision
point of view because their precision behavior is rigorous and
completely independent of the machine on which they are being run.

Very very nice.
RR
Real Field with 53 bits of precision

RealField(53) is RR
True

RealField(200)
Real Field with 200 bits of precision

a = RealField(53).pi()

time for in xrange(1076): b = a*a
CPU time: 0.59 s, Wall time: 0.62 s

R = RealField(1000); R
Real Field with 1000 bits of precision

R(pi)
3.1415926535897932384626433832795028841971693993751058209749445923
816406286208998628034825342117067982148086513282306647093844609550
223172535940812848111745028410270193852110555964462294895493038196
288109756659334461284756482337867831652712019091456485669234603486
45432664821339360726024914127

R(pi®2 + e - 1/sqrt(2))
11.880779448361856329793934109123964593786110563252276164791977134
875521354169931814796181507989787288398538259057005548712734369073
216941888912246958253760219208518707663249568398958630171330016026
288396367067383588340896042612065029949261274329359182048068827305
64004932925888819917512236470

10 of 15 5/7/08 11:55 AM

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

CC: Complex Multiprecision

CC

Complex Field with 53 bits of precision
ComplexField(200)

Complex Field with 200 bits of precision

a =CC(pi + I)

time for _ in xrange(1076): b = a*a # surprisingly slow?.
CPU time: 1.58 s, Wall time: 1.61 s
a = ComplexField(300)(pi + 2*I); a

3.1415926535897932384626433832795028841971693993751058209749445923
81640628620899862803482 +
2.00
00000000000000000000000*I

-6.692835162777698686075405532252639408140744226616162157554797003
740195796880194596971688 +
51.217626406536151713006945999256906811882196443444743758480096257
02689345152314580106404+*I

only 8 bits of precision

a = ComplexField(8)(pi + 2*I); a
3.1 + 2.0*I

a"3

-6.6 + 51.*T

RIF
Real Interval Field with 53 bits of precision

CIF
Complex Interval Field with 53 bits of precision

11 of 15 5/7/08 11:55 AM

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

RIF, CIF: Sage's Interval Arithmetic

More about this next time... This allows us to be much more
confident in the output of a calculation at the expense of speed.

Basically we won't get fooled by rounding errors.
RealIntervalField(200) (pi)

[3.1415926535897932384626433832795028841971693993751058209749444
3.1415926535897932384626433832795028841971693993751058209749470]

pari, maxima: Float types in Othe Software Sage
Includes

PARI

PARI implements its own arbitrary precision real numbers. This is
completely
separate from MPFR (and I think much older). PARI has far more
high precision
special functions than any other free open source program in
existence. Sage
uses PARI to implement many of the special functions on elements of
CC (but not RR).

Syntax Error:

PARI implements its own arbitrary precision real numbers. Thi
is completely

a = pari(pi)
a
3.141592653589793238462643383
a.gamma()
2.288037795340032417959588909
a2
9.869604401089358618834491000

12 of 15 5/7/08 11:55 AM

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

time for _ in xrange(1076): b = a*a
CPU time: 6.30 s, Wall time: 6.59 s

WARNING! The above sloness is not PARI being slow per se, but the
Sage interface to pari, as
pari can do this calculation by itself quickly:

gp

a = Pi;

gettime;

for(i=1,10"6,b=a*a);

gettime/1000.0
0.4480000000000000000000000000

With pari one sets a global precision that impacts all further
calculations.
pari.set real precision(200)

28

a = pari(pi); a

3.1415926535897932384626433832795028841971693993751058209749445923
816406286208998628034825342117067982148086513282306647093844609550
22317253594081284811174502841027019385211055596446229489549303820

a.gamma()

2.2880377953400324179595889090602339228896881533562224411993807454
471006608504282500725304467928474796849245616361973699008669306861
84720719929526723030053489815429191959102611884193668794490992030

This converts MPFR pairs of numbers back and for to PARI behind

the scenes

to do this calculation.

a = ComplexField(500)(pi + I)

a.zeta()
1.0977390684282594480881320973507592738706227822476680574144542084
447295780361179371582894904967048554275906510080739929234451463470
851762576539018 -
0.1287546531500526746334861685306011514356104721647399722702804527

043607346922242230444136985810845012945091987339029032104402282441
4639165329602413*I

Maxima

maxima('1.39902384092834098230948290384902384098234082")

13 of 15 5/7/08 11:55 AM

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

14 of 15

1.399023840928341
maxima.eval('fpprec : 100")
"100'
maxima('1.39902384092834098230948290384902384098234082")
1.399023840928341

a = maxima(pi).bfloat()
a

3.1415926535897932384626433832795028841971693993751058209749445923
816406286208998628034825342117068b0

a*a

9.8696044010893586188344909998761511353136994072407906264133493762
044822419205243001773403718552231b0

time for _ in xrange(1073): b = a *a
CPU time: 3.24 s, Wall time: 8.09 s

Binary Versus Decimal and Roundoff

From http://mathworld.wolfram.com/RoundoffError.html. The Patriot
missile defense system used during the Gulf War was also rendered
ineffective due to roundoff error (Skeel 1992, U.S. GAO 1992). The
system used an integer timing register which was incremented at
intervals of 0.1 s. However, the integers were converted to decimal
numbers by multiplying by the binary approximation of 0.1,

209715

0.00011001100110011001100, = 5097152

As a result, after 100 hours (3.6x10° ticks), an error of

1 209715 5625

(& -) - 3600000 =
10 2097152 16384

or approx. 0.3433 seconds had accumulated. This discrepancy

5/7/08 11:55 AM

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

caused the Patriot system to continuously recycle itself instead of
targeting properly. As a result, an Iraqi Scud missile could not be
targeted and was allowed to detonate on a barracks, killing 28
people.

15 of 15 5/7/08 11:55 AM

