
Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

1 of 15 5/7/08 11:55 AM

480 -- 05-07-2008 floating point

Floating Point Arithmetic in Sage
A reference: What Every Computer Scientist Should Know About
Floating-Point Arithmetic, by David Goldberg (see
http://docs.sun.com/source/806-3568/ncg_goldberg.html).

Sage has a Plethora of Different Floating
Point Arithmetic Models

Python Types: float, complex, decimal
Native Sage Types: RDF, CDF, RQDF, CC, RR, RIF, CIF
Types in Systems Sage Includes: pari, maxima

Python Types

float: Python double-precision floats

From the Python docs: "Floating point numbers are implemented
using double in C. All bets on their precision are off unless you
happen to know the machine you are working with."
float?

 <type 'float'>

a = float('12.93939'); a

 12.93939

time for _ in xrange(10^6): b = a*a

 CPU time: 0.25 s, Wall time: 0.25 s

a^100

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

2 of 15 5/7/08 11:55 AM

 1.5537469625197027e+111

a^300

Traceback (click to the left for traceback)
...
OverflowError: (34, 'Result too large')

1/float(0)

Traceback (click to the left for traceback)
...
ZeroDivisionError: float division

complex: Python double-precision complex

Much like Python floats. All bets on their precision are off unless
you happen to know the machine you are working with.
complex?

a = complex(-2.393,3.3049)

a

 (-2.3929999999999998+3.3048999999999999j)

a.real

 -2.3929999999999998

a.imag

 3.3048999999999999

a.conjugate()

 (-2.3929999999999998-3.3048999999999999j)

time for _ in xrange(10^6): b = a*a

 CPU time: 0.26 s, Wall time: 0.28 s

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

3 of 15 5/7/08 11:55 AM

decimal: Python arbitrary precision floats

Decimal floating point has finite precision with arbitrarily large
bounds. From the Python docs: "The purpose of this module is to
support arithmetic using familiar "schoolhouse" rules and to avoid
some of the tricky representation issues associated with binary
floating point. The package is especially useful for financial
applications or for contexts where users have expectations that are at
odds with binary floating point (for instance, in binary floating
point, 1.00 % 0.1 gives 0.09999999999999995 instead of the
expected Decimal("0.00") returned by decimal floating point)." Here
are some examples of using the decimal module:
from decimal import *
setcontext(ExtendedContext)
Decimal(0)

Traceback (click to the left for traceback)
...
TypeError: Cannot convert 0 to Decimal

Decimal(int(0))

 Decimal("0")

Decimal("1")

 Decimal("1")

Decimal("-.0123")

 Decimal("-0.0123")

Decimal('123456')

 Decimal("123456")

Decimal("123.45e12345678901234567890")

 Decimal("1.2345E+12345678901234567892")

Decimal("1.33") + Decimal("1.27")

 Decimal("2.60")

Decimal("12.34") + Decimal("3.87") - Decimal("18.41")

 Decimal("-2.20")

dig = Decimal('1')
dig / Decimal('3')

 Decimal("0.333333333")

C = getcontext()

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

4 of 15 5/7/08 11:55 AM

C.prec = 18
dig / Decimal('3')

 Decimal("0.333333333333333333")

I really do *NOT* like the Python builtin decimal module, at least
for real mathematics.

It is vastly slower even than Sage's RealField.1.
The output printing format is ugly.2.
It uses global contexts to determine how arithmetic works
instead of the idea of a parent field, which is an extremely
difficult and backward programming model for arithmetic.

3.

It looks, feels, and works differently than the other Python
numeric types.

4.

from decimal import *
setcontext(ExtendedContext)
a = Decimal('9.23903840923')

time for i in xrange(10^6): b = a*a

 CPU time: 32.51 s, Wall time: 33.83 s

a*a

 Decimal("85.3598307")

aa = RR(a)
aa*aa

 85.3598307272272

time for i in xrange(10^6): b = aa*aa

 CPU time: 0.60 s, Wall time: 0.61 s

Native Sage Types

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

5 of 15 5/7/08 11:55 AM

RDF and CDF: Double Precision Sage Types

RDF and CDF are Sage's double precision real and complex number
types. Both are built on top of GSL types, where GSL is the Gnu
scientific library. They provide both arithmetic and lots of special
functions. The main reasons to use RDF and CDF in Sage are (1)
speed, (2) they fit well into the usual Sage structure of elements,
parents, etc. In particular, they work much much better with the rest
of Sage than Python floats. WARNING: Like with Python floats, all
bets on their precision are off unless you happen to know the
machine you are working with.

Also, matrix algebra with matrices that have RDF and CDF entries
is very fast compared to RR and CC matrices.

RDF

 Real Double Field

CDF

 Complex Double Field

a = RDF(1.399); a

 1.399

time for _ in xrange(10^6): b = a*a

 CPU time: 0.25 s, Wall time: 0.31 s

b = RDF.pi(); b

 3.14159265359

a*b

 4.39508812237

Let's compare the speed of RDF and Python floats (they are similar,
though Python is still a little faster)
timeit('a*b')

 625 loops, best of 3: 147 ns per loop

aa=float(a); bb=float(b)

timeit('aa*bb')

 625 loops, best of 3: 133 ns per loop

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

6 of 15 5/7/08 11:55 AM

timeit('a.sin()')

 625 loops, best of 3: 739 ns per loop

timeit('math.sin(aa)')

 625 loops, best of 3: 431 ns per loop

More than just arithmetic!!
R.<x> = RDF[]
R

 Univariate Polynomial Ring in x over Real Double Field

f = R.random_element(5); show(f)

f.roots()

 [(-1.18657304832, 1), (0.708720861278, 1), (12.1207083604, 1)]

plot(f,-5,12.2)

r = random_matrix(RDF,4); show(r)

show(r.charpoly())

0:0602196534944x :675014009648x :625337010755x :469194211969x :2521170590615 À 0 4 À0 3 À0 2 À0

 0

B B @

0:554793328163
0:275560503407
0:411936035159

À0:0771603151762

0:806681249876
À0:767516885245
À0:500777685361
À0:102867639532

0:855672544804
0:140715689923
À0:25129942636
0:618852904735

0:345503002004
À0:0672870712173
À0:402880480964
À0:924382081638

 1

C C A

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

7 of 15 5/7/08 11:55 AM

r.eigenspaces()

[(0.934869625022, Vector space of degree 4 and dimension 1 over
Complex Double Field
User basis matrix:
[-0.78163648851 -0.195584588601 -0.592194261068
-0.00985016193641]), (-0.815028414943 + 0.446137143184*I, Vector
space of degree 4 and dimension 1 over Complex Double Field
User basis matrix:
[0.0954407885658 - 0.11522487684*I
-0.697830743559 0.185183691163 + 0.462464655174*I -0.475373712645 -
0.128451600015*I]), (-0.815028414943 - 0.446137143184*I, Vector
space of degree 4 and dimension 1 over Complex Double Field
User basis matrix:
[0.0954407885658 + 0.11522487684*I
-0.697830743559 0.185183691163 - 0.462464655174*I -0.475373712645 +
0.128451600015*I]), (-0.693217860214, Vector space of degree 4 and
dimension 1 over Complex Double Field
User basis matrix:
[0.0926455891765 -0.933148341712 0.316900596291 -0.142214553535])]

Compare CDF and Python's complex type:
a = CDF(1,1); b = CDF(2,3.14)
aa = complex(a); bb = complex(b)

timeit('a*b') # this seems too slow (?)

 625 loops, best of 3: 282 ns per loop

timeit('aa*bb')

 625 loops, best of 3: 178 ns per loop

time for _ in xrange(10^6): b = a*a

 CPU time: 0.39 s, Wall time: 0.42 s

Note that RDF numbers can't be very big. This can and does cause
trouble in everyday calculations, at least for people like me.

1:0x :38840506508x :178664763023x :26500849771x :559483646877 4 + 1 3 À0 2 À1 À 0

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

8 of 15 5/7/08 11:55 AM

a = RDF(10)

a^308

 1e+308

a^309

 inf

RQDF: Quaddouble

The web page is here: http://crd.lbl.gov/~dhbailey/mpdist/

The idea of quaddouble is that four doubles in a row gives
higher precision doubles.

1.

It's a simple data structure created by computer scientists
(mainly Hida at Berkeley). It is easier than mpfr to use on
massively parallel computers and to extend the standard float
linear algebra libraries to work with quaddouble.

2.

It is nowhere near as rigorous as MPFR -- it gives all kinds of
wrong answers in some cases in low order bits.

3.

Overall it is not that much faster than MPFR. Special functions
are about twice as fast.

4.

RQDF

 Real Quad Double Field

a = RQDF.pi(); a

 3.141592653589793238462643383279502884197169399375105820974944590

time for _ in xrange(10^6): b = a*a

 CPU time: 0.67 s, Wall time: 0.70 s

a*a

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

9 of 15 5/7/08 11:55 AM

 9.869604401089358618834490999876151135313699407240790626413349361

compare with RR (mpfr)
a = RealField(212).pi(); a

 3.14159265358979323846264338327950288419716939937510582097494459

time for _ in xrange(10^6): b = a*a

 CPU time: 0.75 s, Wall time: 0.84 s

RR: Real Multiprecision (built on MPFR)

Paul Zimmerman is the author of MPFR. This following description
is from the MPFR web page:
MPFR (see http://www.mpfr.org/) is a portable library written in C
for arbitrary precision arithmetic on floating-point numbers. It is
based on the GNU MP library. It aims to extend the class of
floating-point numbers provided by the GNU MP library by a precise
semantics. The main differences with the mpf class from GNU MP
are:

the mpfr code is portable, i.e. the result of any operation does
not depend (or should not) on the machine word size
mp_bits_per_limb (32 or 64 on most machines);
the precision in bits can be set exactly to any valid value for
each variable (including very small precision);
mpfr provides the four rounding modes from the IEEE 754-1985
standard.

In particular, with a precision of 53 bits, mpfr should be able to
exactly reproduce all computations with double-precision machine
floating-point numbers (double type in C), except the default
exponent range is much wider and subnormal numbers are not
implemented but can be emulated.

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

10 of 15 5/7/08 11:55 AM

Sage and Magma are the only general purpose computer algebra
systems that use MPFR for their multiprecision floating point
arithmetic. In Sage MPFR is used under the hood to implement RR
and CC.

SUMMARY: Sage's RR and CC fields are awesome from a precision
point of view because their precision behavior is rigorous and
completely independent of the machine on which they are being run.
Very very nice.
RR

 Real Field with 53 bits of precision

RealField(53) is RR

 True

RealField(200)

 Real Field with 200 bits of precision

a = RealField(53).pi()

time for _ in xrange(10^6): b = a*a

 CPU time: 0.59 s, Wall time: 0.62 s

R = RealField(1000); R

 Real Field with 1000 bits of precision

R(pi)

3.141592653589793238462643383279502884197169399375105820974944592307\
81640628620899862803482534211706798214808651328230664709384460955058\
22317253594081284811174502841027019385211055596446229489549303819644\
28810975665933446128475648233786783165271201909145648566923460348610\
45432664821339360726024914127

R(pi^2 + e - 1/sqrt(2))

11.88077944836185632979393410912396459378611056325227616479197713494\
87552135416993181479618150798978728839853825905700554871273436907337\
21694188891224695825376021920851870766324956839895863017133001602629\
28839636706738358834089604261206502994926127432935918204806882730580\
64004932925888819917512236470

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

11 of 15 5/7/08 11:55 AM

CC: Complex Multiprecision

CC

 Complex Field with 53 bits of precision

ComplexField(200)

 Complex Field with 200 bits of precision

a = CC(pi + I)

time for _ in xrange(10^6): b = a*a # surprisingly slow?.

 CPU time: 1.58 s, Wall time: 1.61 s

a = ComplexField(300)(pi + 2*I); a

3.141592653589793238462643383279502884197169399375105820974944592307\
81640628620899862803482 +
2.00\
00000000000000000000000*I

a^3

-6.69283516277769868607540553225263940814074422661616215755479700388\
740195796880194596971688 +
51.21762640653615171300694599925690681188219644344474375848009625732\
02689345152314580106404*I

only 8 bits of precision
a = ComplexField(8)(pi + 2*I); a

 3.1 + 2.0*I

a^3

 -6.6 + 51.*I

RIF

 Real Interval Field with 53 bits of precision

CIF

 Complex Interval Field with 53 bits of precision

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

12 of 15 5/7/08 11:55 AM

RIF, CIF: Sage's Interval Arithmetic

More about this next time... This allows us to be much more
confident in the output of a calculation at the expense of speed.
Basically we won't get fooled by rounding errors.
RealIntervalField(200)(pi)

 [3.1415926535897932384626433832795028841971693993751058209749444 ..3.1415926535897932384626433832795028841971693993751058209749470]

pari, maxima: Float types in Othe Software Sage
Includes

PARI

PARI implements its own arbitrary precision real numbers. This is
completely
separate from MPFR (and I think much older). PARI has far more
high precision
special functions than any other free open source program in
existence. Sage
uses PARI to implement many of the special functions on elements of
CC (but not RR).

Syntax Error:
 PARI implements its own arbitrary precision real numbers. This
is completely

a = pari(pi)
a

 3.141592653589793238462643383

a.gamma()

 2.288037795340032417959588909

a^2

 9.869604401089358618834491000

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

13 of 15 5/7/08 11:55 AM

time for _ in xrange(10^6): b = a*a

 CPU time: 6.30 s, Wall time: 6.59 s

WARNING! The above sloness is not PARI being slow per se, but the
Sage interface to pari, as
pari can do this calculation by itself quickly:

%gp
a = Pi;
gettime;
for(i=1,10^6,b=a*a);
gettime/1000.0

 0.4480000000000000000000000000

With pari one sets a global precision that impacts all further
calculations.
pari.set_real_precision(200)

 28

a = pari(pi); a

3.141592653589793238462643383279502884197169399375105820974944592307\
81640628620899862803482534211706798214808651328230664709384460955058\
22317253594081284811174502841027019385211055596446229489549303820

a.gamma()

2.288037795340032417959588909060233922889688153356222441199380745470\
47100660850428250072530446792847479684924561636197369900866930686106\
84720719929526723030053489815429191959102611884193668794490992030

This converts MPFR pairs of numbers back and for to PARI behind
the scenes
to do this calculation.
a = ComplexField(500)(pi + I)
a.zeta()

1.097739068428259448088132097350759273870622782247668057414454208471\
44729578036117937158289490496704855427590651008073992923445146347091\
851762576539018 -
0.128754653150052674633486168530601151435610472164739972270280452705\
04360734692224223044413698581084501294509198733902903210440228244144\
4639165329602413*I

Maxima

maxima('1.39902384092834098230948290384902384098234082')

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

14 of 15 5/7/08 11:55 AM

 1.399023840928341

maxima.eval('fpprec : 100')

 '100'

maxima('1.39902384092834098230948290384902384098234082')

 1.399023840928341

a = maxima(pi).bfloat()
a

 3.141592653589793238462643383279502884197169399375105820974944592307\816406286208998628034825342117068b0

a*a

 9.869604401089358618834490999876151135313699407240790626413349376220\044822419205243001773403718552231b0

time for _ in xrange(10^3): b = a *a

 CPU time: 3.24 s, Wall time: 8.09 s

Binary Versus Decimal and Roundoff

From http://mathworld.wolfram.com/RoundoffError.html. The Patriot
missile defense system used during the Gulf War was also rendered
ineffective due to roundoff error (Skeel 1992, U.S. GAO 1992). The
system used an integer timing register which was incremented at
intervals of 0.1 s. However, the integers were converted to decimal
numbers by multiplying by the binary approximation of 0.1,

0:00011001100110011001100 :

As a result, after 100 hours (ticks), an error of

or approx. 0.3433 seconds had accumulated. This discrepancy

2 =
209715

2097152

3:6×10 6

() 600000 1

10
À 209715

2097152
Á 3 =

5625

16384

Sage Worksheet: 480 -- 05-07-2008 floating point http://localhost:8000/home/admin/130/print

15 of 15 5/7/08 11:55 AM

caused the Patriot system to continuously recycle itself instead of
targeting properly. As a result, an Iraqi Scud missile could not be
targeted and was allowed to detonate on a barracks, killing 28
people.

