
An Introduction to

Algebraic, Scientific, and Statistical Computing:

an Open Source Approach Using Sage

William A. Stein

April 11, 2008

Abstract

This is an undergraduate textbook about algebraic, scientific, and statistical
computing using the free open source mathematical software system Sage.

Contents

1 Computing with Sage 6
1.1 Installing and Using Sage . 6

1.1.1 Installing Sage . 6
1.1.2 The command line and the notebook 8
1.1.3 Loading and saving variables and sessions 13

1.2 Python: the Language of Sage . 15
1.2.1 Lists, Tuples, Strings, Dictionaries and Sets 15
1.2.2 Control Flow . 24
1.2.3 Errors Handling . 24
1.2.4 Classes . 26

1.3 Cython: Compiled Python . 28
1.3.1 The Cython project . 28
1.3.2 How to use Cython: command line, notebook 28

1.4 Optimizing Sage Code . 28
1.4.1 Example: Optimizing a Function Using A Range of Man-

ual Techniques . 28
1.4.2 Optimizing Using the Python profile Module 37

1.5 Debugging Sage Code . 39
1.5.1 Be Skeptical! . 40
1.5.2 Using Print Statements 41
1.5.3 Debugging Python using pdb 41
1.5.4 Debugging Using gdb . 41
1.5.5 Narrowing down the problem 42

1.6 Source Control Management . 42
1.6.1 Distributed versus Centralized 42
1.6.2 Mercurial . 42

1.7 Using Mathematica, Matlab, Maple, etc., from Sage 42

2 Algebraic Computing 43
2.1 Groups, Rings and Fields . 43

2.1.1 Groups . 43
2.1.2 Rings . 43
2.1.3 Fields . 43

2.2 Number Theory . 43

1

2.2.1 Prime numbers and integer factorization 43
2.2.2 Elliptic curves . 43
2.2.3 Public-key cryptography: Diffie-Hellman, RSA, and El-

liptic curve . 43
2.3 Linear Algebra . 43

2.3.1 Matrix arithmetic and echelon form 43
2.3.2 Vector spaces and free modules 44
2.3.3 Solving linear systems . 44

2.4 Systems of polynomial equations 44
2.5 Graph Theory . 44

2.5.1 Creating graphs and plotting them 44
2.5.2 Computing automorphisms and isomorphisms 44
2.5.3 The genus and other invariants 44

3 Scientific Computing 45
3.1 Floating Point Numbers . 46

3.1.1 Machine precision floating point numbers 46
3.1.2 Arbitrary precision floating point numbers 46

3.2 Interval arithmetic . 46
3.3 Root Finding and Optimization 46

3.3.1 Single variable: max, min, roots, rational root isolation . 46
3.3.2 Multivariable: local max, min, roots 46

3.4 NumericalSolution of Linear Systems 46
3.4.1 Solving linear systems using LU factorization 46
3.4.2 Solving linear systems iteratively 46
3.4.3 Eigenvalues and eigenvectors 46

3.5 Symbolic Calculus . 46
3.5.1 Symbolic Differentiation and integration 46
3.5.2 Symbolic Limits and Taylor series 46
3.5.3 Numerical Integration . 46

4 Statistical Computing 47
4.1 Introduction to R and Scipy.stats 47

4.1.1 The R System for Statistical Computing 47
4.1.2 The Scipy.stats Python Library 47

4.2 Descriptive Statistics . 47
4.2.1 Mean, standard deviation, etc. 47

4.3 Inferential Statistics . 47
4.3.1 Simple Inference . 47
4.3.2 Conditional Inference . 47

4.4 Regression . 47
4.4.1 Linear regression . 47
4.4.2 Logistic regression . 47

2

Preface

This is an undergraduate textbook about Sage, which is a free open source
computational environment for the mathematical sciences. Sage includes op-
timized full-featured implementations of algorithms for computations in pure
mathematics, applied mathematics, and statistics.

I started the Sage project in late 2004 as a project to provide a viable
open source free alternative to the Magma computer algebra system [BCP97].
My main motivation for this was frustration with not being allowed to easily
change or understand the internals of Magma, worry about the longterm future
of Magma, and concern that students and researchers in number theory could
not easily use the Magma-based tools that I had spent six hard years developing.
I started Sage as a new project instead of switching from Magma to an existing
open source system, since the only free open source software for number theory
is PARI [ABC+], whose functionality was far behind that of Magma in several
areas of interest to me (exact linear algebra and arithmetic of algebraic curves).
Since PARI development moves slowly (or I am a very impatient person!), I
didn’t think it was likely this would change in the near future. PARI is a
superb program – it just doesn’t meet my needs, and has design constraints
that make it impossible to modify so that it does so.

The Sage mathematical software system takes a fresh approach to mathemat-
ical software development and architecture. For instance, one major distinction
between Sage and older systems is that Sage uses a standard language. Maple,
Mathematica, Magma, Matlab, PARI, Gap, etc., all use their own special pur-
poses language written just for mathematics. In sharp contrast, one works with
Sage using Python, which is one of the world’s most popular general purpose
scripting languages. This has some drawbacks, e.g., some mathematical expres-
sions can be more difficult to express in Python than in Mathematica (say), but
the overall pros greatly outweigh the cons. By using Python, one can use al-
most anything ever written in Python directly in Sage. And there is much useful
Python code out there that adddresses a wide range of application areas1:

• “Python is fast enough for our site and allows us to produce maintainable
features in record times, with a minimum of developers,” said Cuong Do,
Software Architect, YouTube.com.

1These quotes came from the Python website.

3

• “Google has made no secret of the fact they use Python a lot for a number
of internal projects. Even knowing that, once I was an employee, I was
amazed at how much Python code there actually is in the Google source
code system.”, said Guido van Rossum, Google, creator of Python.

• “Python plays a key role in our production pipeline. Without it a project
the size of Star Wars: Episode II would have been very difficult to pull
off. From crowd rendering to batch processing to compositing, Python
binds all things together,” said Tommy Burnette, Senior Technical Direc-
tor, Industrial Light & Magic.

Instead of writing many of the core libraries from scratch like Maple, Math-
ematica, Magma, Gap, PARI, Singular, and Matlab did, in Sage I assembled
together the best open source software out there, and built on it, always making
certain that the complete system was easily buildable from source on a reason-
able range of computers. I was able to do this to a large extent with Sage
because of fortuitous timing: the components were out there and mature, their
code is stable, and their copyright licences are clear and compatible (none of this
was the case when the afformentioned math software was started). Of course
there are drawbacks to this approach. Some of the upstream libraries can be
difficult to understand, are written in a range of languages, and have different
conventions than Sage. By strongly encouraging good relations between the
Sage project and the projects that create many of the components of Sage, we
turn these weakness into strengths.

A wide and vibrant community of developers and users have become involved
with Sage. Due to the broad interests of this large community of developers,
Sage has grown into a project with the following specific goal:

Mission Statement: Provide a viable free open source alternative
to Magma, Maple, Mathematica, and Matlab.

Among many other things, this mission statement implies that in order to suc-
ceed Sage should have a graphical user interface, 2D and 3D graphics, support
for statistical and numerical computation, and much more.

Sage is starting to be recognized worldwide as a useful tool in mathematics
education and research. Sage won first prize in the Scientific Category of the
2007 Tropheés du Libre.

4

The Sage development model has also matured. There are now regular
releases of Sage about once every two weeks, and all code that goes into Sage
is peer reviewed.

Sage has also received generous financial support from mathematics insti-
tutions (including the Clay Mathematics Institute, MSRI, PIMS, and IPAM),
universities such as University of Washington and University of Bristol, and
from the National Science Foundation, the Department of Defense, and Mi-
crosoft Corporation.

Exercise 0.1.

1. Make a list of 5 free open source programs you have used.

2. For each program, write down a corresponding commercial program, if it
exists.

3. List some of the pros and cons from your perspective of the free program
versus the commercial version.

Acknowledgements: Many people gave me feedback on this book including
Fernando Perez, Timothy Clemans, Hector Villafuerte, Georg Muntingh, Robert
Bradshaw...

5

Chapter 1

Computing with Sage

1.1 Installing and Using Sage

1.1.1 Installing Sage

You are strongly encouraged to follow along with all examples in this book. Get
Sage up and running now! Try out everything, modify things, experiment, look
under the hood, and do all the exercises!

The website http://sagemath.org/lists.html lists the two main
Sage mailing list: sage-support and sage-devel. The first is for all questions
about using and installing Sage, and for bug reports. The second is for discus-
sion related directly to modifying and improving Sage. Join these lists; note
that you will likely want to select daily digest for message deliver, so that you
receive one email a day instead of 50!

6

http://sagemath.org/lists.html

If you find a bug in Sage, we want to know about it! Send an email to
sage-support describing the bug in as much detail as you can.

The exact details for installing Sage will change over time. The following
briefly describes the situation in April 2008; for more details see the Sage in-
stallation guide.

You install Sage on any computer either by extracting a pre-compiled binary
or building from source.

To install a binary, download the binary (either a .tar.gz file, a .dmg file,
or a .7z file) from http://sagemath.org, extract the file, and following the
directions in the README.txt file. In most cases, you can simply put the
extracted sage-x.y.z directory somewhere, and run Sage from there.

Installing Sage on Microsoft Windows currently involves installing the
VMware player program, then running a virtual machine. This will likely change
significantly within a year.

Currently you can only build Sage from source on Linux and OS X (or on
Windows in a Linux virtual machine). To build from source, which will take
over an hour, first download sage-x.y.z.tar from http://sagemath.
org/download.html. Once you have downloaded Sage, extract the “tarball”
as follows:

$ tar xvf sage-x.y.z.tar

Then run the make command in the sage-x.y.z directory:
$ cd sage-x.y.z
$ make
... 137600 lines of output ...
real 102m57.600s
user 71m10.115s
sys 14m56.116s
To install gap, gp, singular, etc., scripts
in a standard bin directory, start sage and
type something like

sage: install_scripts(’/usr/local/bin’)
at the SAGE command prompt.

SAGE build/upgrade complete!

The above should work if you have gcc, g++, make, and a few other prerequi-
sites installed (Sage includes almost all depedencies), and are using a supported
architecture and operating system. An advantage of building from source is that
if you can build from source, then you can change absolutely any part of Sage
and use the modified version. If you run into trouble, email sage-support.

Exercise 1.1. Install Sage on a computer.

7

http://sagemath.org
http://sagemath.org/download.html
http://sagemath.org/download.html

1.1.2 The command line and the notebook

The command line and the Sage notebook provide two complementary ways
for you to interactively work with Sage. The command line provides a simple
and powerful way to type Sage commands. The notebook provides a modern
AJAX web-browser based graphical interface to Sage. Both the notebook and
command line have advantages and disadvantages, and you will want to become
familiar with each. For example, the notebook is better for graphics, whereas
the command line is better for debugging and profiling code (see Section ??).

Technical Note 1.2. The Sage command line is a customized version of the
incredible IPython interactive shell by Fernando Perez et al. [PG07]. The Sage
notebook is a Python/Javascript AJAX application built by the author and T.
Boothby, T. Clemans, A. Clemesha, B. Moretti, Y. Qiang and D. Raymer; it
uses Twisted [Twi], Pexpect [Pex], and jQuery [jQu].

In Linux or OS X, start the command line by typing ./sage in the direc-
tory where you installed Sage, or just type sage if the Sage install directory
sage-x.y.z is in your PATH. In Windows, after starting the Sage vmware
image, type sage at the login prompt.

In Linux or OS X, start the notebook by typing ./sage -notebook in the
directory where you installed Sage:

teragon:sage-2.10.4 was$./sage -notebook
--
| SAGE Version 2.10.4, Release Date: 2008-03-16 |
Type notebook() for the GUI, and license() for information.

Please wait while the SAGE Notebook server starts...
...

If you are on a single-user system, you can alternatively type ./sage
-inotebook, which is less secure, but sometimes more convenient since it
only uses http. In particular, any other user on your system could also connect

8

to your notebook and delete your files – this isn’t a problem if there are no other
users logged into your system.

In Windows, type notebook at the login prompt, then use your web
browser to navigate to the URL that is displayed. You can also use Sage with-
out installing it on your computer by signing up for an account at https:
//sagenb.org.

Exercise 1.3.The point of this exercise is to try out both the Sage command line and the
Sage notebook.

1. Using the Sage command line, compute 123 + 456.

2. Using the Sage notebook, compute 456 + 789.

Tab completion and help are incredibly useful features of both the command
line and notebook, and both work in almost the same way in both. This is useful
in two ways. First, if you type the first few letters of a command, then press
the tab key, you’ll see all commands that begin with those first few letters.

The second way in which tab completion is useful is that it shows you most
of the things you can do with your object. For example, if n is an integer and
you type n.[tab key], you’ll see a list of all the functions that you can call
on n. For example, the code n=2008 in Sage sets the variable n equal to the
integer 2008:

sage: n = 2008

Then type n.fa[tab key] (press the tab key after typing n.fa), you’ll see
that n.factor is a command associated to n. Type n.factor() to factor n:

9

https://sagenb.org
https://sagenb.org

sage: n = 2008
sage: n.factor()
2ˆ3 * 251

Here we are showing all input and output as if they were typed at the
command line. If you’re using the notebook press shift-enter after typing n =
2008 into an input cell. After computing the factorization you will see something
like this:

Exercise 1.4. Use tab completion to determine how to compute the factorial
of 100.

In the command line every command you type is recorded in the history.
Use the up arrow to scroll through previous commands; this history even works
if you quit Sage and restart. Likewise, in the notebook previous commands are
visibly recorded in input cells, and you can click or use the arrow keys to move
to a previous cell and press shift-enter to evaluate it again.

Exercise 1.5. 1. Quit the Sage command line, restart Sage, and press the
up arrow until you see n = 2008. Change 2008 to 2009 and press enter.
Then factor the result, again using the up arrow to select n.factor().

2. In the Sage notebook click and change n = 2008 to n = 2009, then
press shift-enter twice to see how 2009 factors.

10

If n is any object in Sage (even the function n.factorial), type ? after it
and press enter to see a description of the command along with examples; this
works the same on the command line and in the notebook. In the notebook, you
can also type n.factorial(and press the tab key for popup help (yes, that
is an open parenthesis instead of a ?, as if you are about to call the function).
If you put two question marks instead of one you’ll see the help and source code
of the function or object, i.e., the computer code that defines that function or
object.

There are several ways to time how long it takes for something in Sage to
run. If the command is just one line, put the word time at the beginning of
the line, e.g.,

sage: time n = factorial(10ˆ5)
CPU time: 0.10 s, Wall time: 0.10 s

11

Exercise 1.6. Make up a line of input to Sage that takes at least ten seconds
to evaluate.

You can time execution of all the code in a notebook cell by putting %time
at the beginning of the cell. For example:

{{{
%time
n = factorial(10ˆ5)
///
CPU time: 0.10 s, Wall time: 0.10 s
}}}

Above we have used the following notation:

{{{
INPUT
///
OUTPUT
}}}

Thus the above looks like the following in the notebook:

You can also time execution of a block of code by typing t = cputime()
before the block, then after the block typing cputime(t). This will output the
number of CPU seconds that elapsed during the computation. For the physical
amount of time that actually elapsed on your “wall” clock, type instead t =
walltime() and walltime(t). The increased flexibility of using cputime
and walltime can be useful, especially when profiling complicated programs.

Sage consists of dozens of components, and sometimes calls out to external
programs. The cputime command only records the CPU time spent by the
master Sage process, and ignores all time spent by programs that Sage calls out
to. Thus to get a good sense of how long some Sage code really takes to run, it
is best to use walltime and take the minimum over multiple runs. However,
another issue to watch out for is that some Sage commands remember values
they have computed, so all calls after the first one may be much faster, which
will completely throw of timings.

Once you start writing complicated Sage programs, especially when using
the command line, you’ll want to place code in an external file and edit it with
a standard code editor (use the special Python mode if your editor has one).

12

This works very well in Linux and OS X, where you put the code in the file of
your choice and type

sage: load filename.sage

to execute all the code in filename.sage. Under Windows, the situation is
currently more complicated – you either have to configure VMware shared fold-
ers, or regularly upload the file to the Sage notebook using Data --> Upload
or Create File. Another separate option1 is to use the Windows program
WinSCP [?]. Using WinSCP you can login to the VMware machine (use login
name ’login’ and password ’sage’). Then you can select edit from the context
menu and edit files. WinSCP takes care of automatically uploading and down-
loading the modified version of the file whenever you change it. If you call
the file filename.sage, you would type the following to load the file you’re
editing:

sage: load /home/login/filename.sage

For OS X or Linux users, if you’re constantly editing filename.sage, and
find yourself regularly typing load filename.sage into Sage, you should
instead attach filename.sage by typing

sage: attach filename.sage

This works exactly like load filename.sage, except that if
filename.sage is changed and you execute a new command, Sage
reloads filename.sage before executing the command. Try it; you’ll like it.

Exercise 1.7. Create a file hi.sage that contains the line print "hello".
Load that file into Sage using the load command, and see that hello is printed
out. If you’re using OS X or Linux, attach hi.sage, then change “hello”
to something else, then type something at the Sage prompt – you should see
something besides “hello” printed out.

1.1.3 Loading and saving variables and sessions

As mentioned above, in Sage you create a new variable by assigning to it. For
example, typing n = 2008 creates a new variable n and assigns the value 2008
to it. Most (but not all!2) individual variables, even incredibly complicated
ones, can be easily saved or loaded to disk using the save and load functions.
This can be extremely useful if it takes a long time to compute a variable, and
you want to save it to use it again later.

First we discuss using save and load from the command line, then from the
notebook. In the following command-line session, we set n to 2008, then save n

1suggested by Lars Fischer; the author has not yet tried this!!
2See the Python documentation on the pickle module.

13

to the variable myvar.sobj, quit sage, restart, and reload the value of n from
that file.

teragon:˜ was$ sage
sage: n = 2008
sage: save(n, ’myvar’)
sage: quit
Exiting SAGE (CPU time 0m0.02s, Wall time 0m41.28s).
teragon:˜ was$ ls -l myvar.sobj
-rw-r--r-- 1 was was 48 Mar 26 22:40 myvar.sobj
teragon:˜ was$ sage
sage: load(’myvar.sobj’)
2008

Note that .sobj is added to the end of the filename if it isn’t given. Also, all
saved objects are compressed to save disk space.

Using save and load from the notebook is a bit different, since every notebook
cell is executed in a different subdirectory. In the following example, in the first
cell the value of n is saved in the file myvar.sobj in the current cell directory.
In general, in the notebook every file created in the current (cell) directory is
either displayed embedded in the output or a link to it is created – you could
right click and download myvar.sobj to your hard drive if you wanted. In the
second example we save the value of n to the file myvar.sobj in the directory
above the current cell directory. This directory is fixed independent of the cell
we’re working in, so we can load myvar.sobj in another cell, which we do.

Not only can you load and save most objects, but you can also save all the
objects defined in the current session. WARNING: Some objects, e.g., references
to files, can’t be saved at all, and they won’t be saved when you save a session. In
this example we define two variables n = 2008 and m = −2/3, save the session,
then restart, load the session and see that n and m are again defined. p

14

teragon:˜ was$ sage
sage: n = 2008
sage: m = -2/3
sage: save_session(’session’)
sage: quit
Exiting SAGE (CPU time 0m0.08s, Wall time 9m11.00s).
teragon:˜ was$ sage
losage: load_session(’session’)
sage: n
2008
sage: m
-2/3

Think of save session as being sort of like “saving your game” in a video
game.

Exercise 1.8. (Command line only.) A useful feature of session loading and
saving is that you can save two separate sessions and load them at the same
time. Instead of the second loaded session overwriting the first completely, the
two are merged. Try this out – define several variables in two separate sessions,
save both sessions. Quit, load one session, then load the other and see that the
sessions are merged.

Behind the scenes session loading and saving works essentially by calling
save on every currently defined variable – the objects that can’t be saved just
don’t get saved.

1.2 Python: the Language of Sage

Python has excellent support for basic data structures, including lists, tuples,
strings, dictionaries, sets, and user-defined classes. Functions, control flow, and
error handling are also all well supported. In this section we just give a very
brief overview with exercises of the Python language, which should be enough
to get you going. There are many excellent books about the basics of Python;
my favorites are the official Python Tutorial, Dive Into Python, and Python in
a Nutshell, and I strongly encourage you to look at them. In fact, the examples
below very closely follow those in the Python Tutorial.

1.2.1 Lists, Tuples, Strings, Dictionaries and Sets

The five basic data structures you will use constantly in Python programming
are lists, tuples, strings, dictionaries, and sets.

15

Lists

Lists and tuples are the two main sequence types, and both allow you to store
and work with arbitrary finite sequences of Python objects. Both are indexed
starting at 0. The main difference between lists and tuples is that lists are
mutable, whereas tuples are immutable; this means that you can easily change
lists, which has some subtle pros and cons as we will see below.

You can create a list by explicitly listing its elements, by adding, multiplying,
appending to and “slicing” existing lists:

sage: a = [’spam’, ’eggs’, 100, 1234]; a
[’spam’, ’eggs’, 100, 1234]
sage: a[0]
’spam’
sage: a[3]
1234
sage: a[-2]
100
sage: a[1:-1] # list slicing
[’eggs’, 100]
sage: a[:2] + [’bacon’, 2*2]
[’spam’, ’eggs’, ’bacon’, 4]
sage: 3*a[:3] + [’Boo!’]
[’spam’, ’eggs’, 100, ’spam’, ’eggs’, 100, ’spam’, ’eggs’, 100, ’Boo!’]
sage: a.append(314); a
[’spam’, ’eggs’, 100, 1234, 314]

Absolutely anything can go in a list, and you can change the entries:

sage: b = [[1,2], 1.234, 3/4, vector([1/3,2,3]), [[1]]]; b
[[1, 2], 1.23400000000000, 3/4, (1/3, 2, 3), [[1]]]

Assignment to lists is also quite flexible. For example, if you use a nega-
tive index the index counts down from the right. You can also use the slicing
notation, e.g., a[1:3], to change whole sections of a list at once.

16

sage: b[0] = 5; b
[5, 1.23400000000000, 3/4, (1/3, 2, 3), [[1]]]
sage: b[-1] = ’hello’; b
[5, 1.23400000000000, 3/4, (1/3, 2, 3), ’hello’]
sage: b[:2]; b
[5, 1.23400000000000]
sage: b[:2] = [1,2,3,4]; b
[1, 2, 3, 4, 3/4, (1/3, 2, 3), ’hello’]
sage: b[1:4] = []; b
[5, ’hello’]
sage: len(b) # the length of b
2

There are many list methods such as append, remove, sort, index, etc. Make a
list v then type v.[tab key] to see a list of those methods.

You can also use the beautiful and powerful list comprehension construction
to make new lists from old lists. This is similar to “set builder notation” in
mathematics:

sage: vec = [2, 4, 6]
sage: [3*x for x in vec]
[6, 12, 18]
sage: [3*x for x in vec if x > 3]
[12, 18]
sage: [3*x for x in vec if x < 2]
[]
sage: [[x,xˆ2] for x in vec]
[[2, 4], [4, 16], [6, 36]]
sage: vec1 = [2, 4, 6]
sage: vec2 = [4, 3, -9]
sage: [x*y for x in vec1 for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
sage: [x+y for x in vec1 for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]
sage: [vec1[i]*vec2[i] for i in range(len(vec1))]
[8, 12, -54]

Finally use the del statement to delete an element of a list or to delete a
whole chunk of a list:

17

sage: a = [-1, 1, 66.25, 333, 333, 1234.5]; a
[-1, 1, 66.2500000000000, 333, 333, 1234.50000000000]
sage: del a[0]
sage: a
[1, 66.2500000000000, 333, 333, 1234.50000000000]
sage: del a[2:4]
sage: a
[1, 66.2500000000000, 1234.50000000000]
sage: del a[:]
sage: a
[]

Note in particular the command del a[2:4] which deletes the entries of a in
positions 2 and 3. These are exactly the entries you see if you type a[2:4].

At this point a major warning is in order. In Python, variables store a
reference to an object. Thus we have the following:

sage: v = [1]
sage: w = [v,v,v]
sage: w
[[1], [1], [1]]
sage: v.append(-4)
sage: w
[[1, -4], [1, -4], [1, -4]]

Whoa!? What just happened there? We first made a list v with the single
element 1. Then we made a list w with three references to that first list v.
Finally, we appended −4 to v, which changed v to a list with two elements
1,−4. Finally, when we print w we see this new 2-element v printed 3 times.
OK? The entries of w above are all the same list. We confirm this using the
Python is operator, which returns True only when two variables reference
exactly the same object:

sage: w[0] is w[1]
True
sage: w[1] is w[2]
True

To make each entry of the list w distinct, make a list of copies of v:

18

sage: v = [1]
sage: w = [copy(v) for _ in range(3)]; w
[[1], [1], [1]]
sage: w[0].append(-4)
sage: w
[[1, -4], [1], [1]]

Tuples

As mentioned above, tuples are sequence types like lists, except the objects in
the tuple can’t be deleted or replaced once the tuple has been created.

sage: t = (12345, 54321, ’hello!’)
sage: t[0]
12345
sage: t
(12345, 54321, ’hello!’)
sage: type(t)
<type ’tuple’>
sage: t[0] = 5 # tuples are immutable
Traceback (most recent call last):
...
TypeError: ’tuple’ object does not support item assignment
sage: # Tuples may be nested:
sage: u = (t, (1, 2, 3, 4, 5))
sage: u
((12345, 54321, ’hello!’), (1, 2, 3, 4, 5))

There is also an eloquent tuple unpacking system, which makes it simple to
assign several variables to the entries of a tuple.

sage: t = (12345, 54321, ’hello!’); t
(12345, 54321, ’hello!’)
sage: # tuple UNPACKING
sage: x, y, z = t
sage: print x, y, z
12345 54321 hello!

Tuple unpacking also supports having functions to have multiple return vari-
ables, without running into the numerous painful gotcha’s that other languages
(e.g., Matlab and Magma) suffer from having multiple return variables.

19

sage: def foo(a,b):
... return a+b, a-b
sage: c,d = foo(2,3) # multiple return values!
sage: print c, d
5 -1

Strings

Python can manipulate strings, and uses similar slice notation to lists and tuples.
In fact, a string behaves very much like a tuple of characters.

In the following examples we illustrate some of the ways you can construct
a string. Notice that you can use single or double quotes, that you can use
a backslash to include arbitrary quotes in a string, and that strings can span
multiple lines.

sage: ’sage math’
’sage math’
sage: ’doesn\’t’
’doesn’t’
sage: "doesn’t"
"doesn’t"
sage: ’"Yes," he said.’
’"Yes," he said.’
sage: "\"Yes,\" he said." # NOTE: this is broken in sage-2.11
’"Yes," he said.’

Use triple quotes to create a string the spans several lines:

sage: s = """
Usage: thingy [OPTIONS]

-h Display this usage message
-H hostname Hostname to connect to

"""
Usage: thingy [OPTIONS]

-h Display this usage message
-H hostname Hostname to connect to

You can index, slice and add strings in exactly the same way as you do with
lists and tuples:

20

sage: word = "Sage"
sage: word + word
’SageSage’
sage: word*5
’SageSageSageSageSage’
sage: len(word*5)
20
sage: word[1]
’a’
sage: word[-1]
’e’
sage: word[0:2]
’Sa’
sage: word[2:]
’ge’

Dictionaries

A Python dictionary is an unordered set of key:value pairs, where the keys
are unique. A pair of braces {} creates an empty dictionary; placing a comma-
separated list of key:value pairs initializes the dictionary.

The following examples illustrate how to create a dictionary, get access to
entries, get a list of the keys and values, etc.

sage: d = {’sage’:’math’, 1:[1,2,3]}; d
{1: [1, 2, 3], ’sage’: ’math’}
sage: d[’sage’]
’math’
sage: d[1]
[1, 2, 3]
sage: d.keys()
[1, ’sage’]
sage: d.values()
[[1, 2, 3], ’math’]
sage: d.has_key(’sage’)
True
sage: ’sage’ in d
True

You can delete entries from the dictionary using the del keyword.

21

sage: del d[1]
sage: d
{’sage’: ’math’}

You can also create a dictionary by typing dict(v) where v is a list of
pairs:

sage: dict([(1, [1,2,3]), (’sage’, ’math’)])
{1: [1, 2, 3], ’sage’: ’math’}
sage: dict([(x, xˆ2) for x in [1..5]])
{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

You can also make a dictionary from a “generator expression” (we have not
discussed these yet).

sage: dict((x, xˆ2) for x in [1..5])
{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

Dictionary keys must be hashable

At this point another major warning is in order. The keys k of a dictionary
must be hashable, which means that calling hash(k) doesn’t result in an error.
Some Python objects are hashable and some are not. Usually objects that can’t
be changed are hashable, whereas objects that can be changed are not hashable,
since the hash of the object would change, which would totally devastate most
algorithms that use hashes. In particular, numbers and strings are hashable, as
are tuples of hashable objects, but lists are never hashable.

We hash the string ’sage’, which works since one cannot change strings.

sage: hash(’sage’)
-596024308

The list v = [1,2] is not hashable, since v can be changed by deleting,
appending, or modifying an entry. Because [1,2] is not hashable it can’t be
used as a key for a dictionary.

22

sage: hash([1,2])
Traceback (most recent call last):
...
TypeError: list objects are unhashable
sage: d = {[1,2]: 5}
Traceback (most recent call last):
...
TypeError: list objects are unhashable

However the tuple (1,2) is hashable and can hence be used as a dictionary
key.

sage: hash((1,2))
1299869600
sage: d = {(1,2): 5}

Sets

Python has a set datatype, which behaves much like the keys of a dictionary.
A set is an unordered collection of unique hashable (see Section 1.2.1) objects.
Sets are incredibly useful when you want to quickly eliminate duplicates, do
set theoretic operations (union, intersection, etc.), and tell whether or not an
objects belongs to some collection.

You create sets from the other Python data structures such as lists, tuples,
and strings. For example:

sage: set((1,2,1,5,1,1))
set([1, 2, 5])
sage: a = set(’abracadabra’); b = set(’alacazam’)
sage: print a
set([’a’, ’r’, ’b’, ’c’, ’d’])
sage: print b
set([’a’, ’c’, ’z’, ’m’, ’l’])

There are also many handy operations on sets.

23

sage: a - b # letters in a but not in b
set([’r’, ’b’, ’d’])
sage: a | b # letters in either a or b
set([’a’, ’c’, ’b’, ’d’, ’m’, ’l’, ’r’, ’z’])
sage: a & b # letters in both a and b
set([’a’, ’c’])

If you have a big list v and want to repeatedly check whether various elements
x are in v, you could write x in v. This would work. Unfortunately, it would
be really slow, since every command x in v requires linearly searching through
for x. A much better option is to create w = set(v) and type x in w, which
is very fast.

sage: v = range(10ˆ6)
sage: time 10ˆ5 in v
True
CPU time: 0.16 s, Wall time: 0.18 s
sage: time w = set(v)
CPU time: 0.12 s, Wall time: 0.12 s
sage: time 10ˆ5 in w
True
CPU time: 0.00 s, Wall time: 0.00 s

1.2.2 Control Flow

[[This section is not finished.]]

1.2.3 Errors Handling

[[This section is not finished.]]
- Loops, functions, control statements; putting code in files and modules

(import/load/attach)

24

math 480 -- april 7, 2008
system:sage

<h1> Errors and Exceptions: Recovering from problems gracefully </h1>

<h2>Reference: Chapter 8 of the Python Tutorial</h2>

<h3>Syntax Errors</h3>

{{{
ljsad 9as oha ivhxzv @#!#ˆ!#QASDkias fiaosdj f
///
Syntax Error:

ljsad 9as oha ivhxzv @#!#ˆ!#QASDkias fiaosdj f
}}}

{{{
while True print ’Hello world’
///
Syntax Error:

while True print ’Hello world’
}}}

<h3>Exceptions</h3>

Python has excellent very fast support for exception handling, which makes writing code much much cleaner.

Here is an example. The <i>last line</i> of the error message indicates what happened!

{{{
10 * (1/0)
///

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/was/.sage/sage_notebook/worksheets/admin/61/code/302.py", line 6, in <module>
exec compile(ur’Integer(10) * (Integer(1)/Integer(0))’ + ’\n’, ’’, ’single’)

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sympy/plotting/", line 1, in <module>

File "element.pyx", line 1480, in sage.structure.element.RingElement.__div__
File "coerce.pxi", line 138, in sage.structure.element._div_c
File "integer.pyx", line 1095, in sage.rings.integer.Integer._div_c_impl
File "integer_ring.pyx", line 204, in sage.rings.integer_ring.IntegerRing_class._div

ZeroDivisionError: Rational division by zero
}}}

This page http://docs.python.org/lib/module-exceptions.html lists all the standard builtin exceptions along with what each means. Some common exceptions that appear in mathematical programming include

 TypeError
 ZeroDivisionError
 ArithmeticError
 ValueError
 RuntimeError
 NotImplementedError
 OverflowError
 IndexError

{{{
’ & ’.join([’1’,2])
///

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/was/.sage/sage_notebook/worksheets/admin/61/code/306.py", line 6, in <module>
exec compile(ur’\u0027 & \u0027.join([\u00271\u0027,Integer(2)])’ + ’\n’, ’’, ’single’)

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sympy/plotting/", line 1, in <module>

TypeError: sequence item 1: expected string, sage.rings.integer.Integer found
}}}

{{{
1/0
///

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/was/.sage/sage_notebook/worksheets/admin/61/code/307.py", line 6, in <module>
exec compile(ur’Integer(1)/Integer(0)’ + ’\n’, ’’, ’single’)

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sympy/plotting/", line 1, in <module>

File "element.pyx", line 1480, in sage.structure.element.RingElement.__div__
File "coerce.pxi", line 138, in sage.structure.element._div_c
File "integer.pyx", line 1095, in sage.rings.integer.Integer._div_c_impl
File "integer_ring.pyx", line 204, in sage.rings.integer_ring.IntegerRing_class._div

ZeroDivisionError: Rational division by zero
}}}

{{{
factor(0)
///

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/was/.sage/sage_notebook/worksheets/admin/61/code/308.py", line 6, in <module>
exec compile(ur’factor(Integer(0))’ + ’\n’, ’’, ’single’)

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sympy/plotting/", line 1, in <module>

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sage/rings/arith.py", line 1675, in factor
raise ArithmeticError, "Prime factorization of 0 not defined."

ArithmeticError: Prime factorization of 0 not defined.
}}}

{{{
CRT(2, 1, 3, 3)
///

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/was/.sage/sage_notebook/worksheets/admin/61/code/309.py", line 6, in <module>
exec compile(ur’CRT(Integer(2), Integer(1), Integer(3), Integer(3))’ + ’\n’, ’’, ’single’)

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sympy/plotting/", line 1, in <module>

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sage/rings/arith.py", line 1904, in crt
raise ValueError, "arguments a and b must be coprime"

ValueError: arguments a and b must be coprime
}}}

{{{
find_root(SR(1), 0, 5)
///

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/was/.sage/sage_notebook/worksheets/admin/61/code/310.py", line 6, in <module>
exec compile(ur’find_root(SR(Integer(1)), Integer(0), Integer(5))’ + ’\n’, ’’, ’single’)

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sympy/plotting/", line 1, in <module>

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sage/numerical/optimize.py", line 54, in find_root
return f.find_root(a=a,b=b,xtol=xtol,rtol=rtol,maxiter=maxiter,full_output=full_output)

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sage/calculus/calculus.py", line 3065, in find_root
raise RuntimeError, "no zero in the interval, since constant expression is not 0."

RuntimeError: no zero in the interval, since constant expression is not 0.
}}}

{{{
brun.str(50)
///

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/was/.sage/sage_notebook/worksheets/admin/61/code/311.py", line 6, in <module>
exec compile(ur’brun.str(Integer(50))’ + ’\n’, ’’, ’single’)

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sympy/plotting/", line 1, in <module>

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sage/functions/functions.py", line 145, in str
return str(self._mpfr_(R))

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sage/functions/constants.py", line 1802, in _mpfr_
raise NotImplementedError, "Brun’s constant only available up to %s bits"%self.__bits

NotImplementedError: Brun’s constant only available up to 41 bits
}}}

{{{
float(5)ˆfloat(902830982304982)
///

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/was/.sage/sage_notebook/worksheets/admin/61/code/312.py", line 6, in <module>
exec compile(ur’float(Integer(5))**float(Integer(902830982304982))’ + ’\n’, ’’, ’single’)

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sympy/plotting/", line 1, in <module>

OverflowError: (34, ’Result too large’)
}}}

{{{
v = [1,2,3]
v[10]
///

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/was/.sage/sage_notebook/worksheets/admin/61/code/313.py", line 7, in <module>
exec compile(ur’v[Integer(10)]’ + ’\n’, ’’, ’single’)

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sympy/plotting/", line 1, in <module>

IndexError: list index out of range
}}}

<h3>Handling Exceptions</h3>

You can often handle specific exceptions by doing a specific action only if the exception occurs.

{{{
try:

raise IOError
1/0
raise NotImplementedError

except ArithmeticError:
print "A zero division error occured."

except NotImplementedError:
print "gees. can’t sage do anything!?"

///

Traceback (most recent call last): raise NotImplementedError
IOError
}}}

The <tt>ArithmeticError</tt> exception is the base class for those built-in exceptions that are raised for various
arithmetic errors: OverflowError, ZeroDivisionError, FloatingPointError. Thus the following also works.

{{{
try:

1/0
except ArithmeticError:

print "something went wrong"
///
something went wrong
}}}

{{{
try:

1/0
except RuntimeError:

print "a runtime error!"
///
Traceback (most recent call last): print "a runtime error!"
File "element.pyx", line 1480, in sage.structure.element.RingElement.__div__
File "coerce.pxi", line 138, in sage.structure.element._div_c
File "integer.pyx", line 1095, in sage.rings.integer.Integer._div_c_impl
File "integer_ring.pyx", line 204, in sage.rings.integer_ring.IntegerRing_class._div

ZeroDivisionError: Rational division by zero
}}}

{{{

///
}}}

{{{
def f(n):

try:
return nˆ2

finally:
print "hi"

///
}}}

{{{
print f(10)
///

hi
100
}}}

{{{
try:

a = 5
b = 0
c = a/b
d = 10

except RuntimeError:
print "a runtime error"

else:
print "Everything ran fine!" # only executed if no exception raised.

finally:
print "This always gets executed."

///

This always gets executed.
Traceback (most recent call last): except RuntimeError:
File "element.pyx", line 1480, in sage.structure.element.RingElement.__div__
File "coerce.pxi", line 138, in sage.structure.element._div_c
File "integer.pyx", line 1095, in sage.rings.integer.Integer._div_c_impl
File "integer_ring.pyx", line 204, in sage.rings.integer_ring.IntegerRing_class._div

ZeroDivisionError: Rational division by zero
}}}

{{{
try:

a = 5
b = 1
c = a/b
d = 10

except RuntimeError:
print "a runtime error"

else:
print "Everything ran fine!" # only executed if no exception raised.

finally:
print "This always gets executed."

///

Everything ran fine!
This always gets executed.
}}}

{{{

///
}}}

This is an example use of exception handling in a function.
We make a division function that returns +infinity instead upon division by 0.

{{{
def mydiv(a,b):

return a/b
///
}}}

{{{
mydiv(2, 0)
///

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/was/.sage/sage_notebook/worksheets/admin/61/code/331.py", line 6, in <module>
exec compile(ur’mydiv(Integer(2), Integer(0))’ + ’\n’, ’’, ’single’)

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sympy/plotting/", line 1, in <module>

File "/Users/was/.sage/sage_notebook/worksheets/admin/61/code/330.py", line 7, in mydiv
return a/b

File "element.pyx", line 1480, in sage.structure.element.RingElement.__div__
File "coerce.pxi", line 138, in sage.structure.element._div_c
File "integer.pyx", line 1095, in sage.rings.integer.Integer._div_c_impl
File "integer_ring.pyx", line 204, in sage.rings.integer_ring.IntegerRing_class._div

ZeroDivisionError: Rational division by zero
}}}

{{{
def mydiv(a,b):

try:
return a/b

except ZeroDivisionError:
print "You tried to divide by 0, but that’s OK, I’ll give you infinity back."
return infinity

///
}}}

{{{
mydiv(2,3)
///

2/3
}}}

{{{
mydiv(0,0)
///

You tried to divide by 0, but that’s OK, I’ll give you infinity back.
+Infinity
}}}

{{{

///
}}}

<h3>Raising exceptions</h3>
Use the <tt>raise</tt> keyword to raise an exception.

{{{
def mydiv(a,b):

if b == 0:
raise ZeroDivisionError, "Oops -- you can’t divide by 0"

return a/b
///
}}}

{{{
mydiv(2,3)
///

2/3
}}}

{{{
mydiv(2,0)
///

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/was/.sage/sage_notebook/worksheets/admin/61/code/338.py", line 6, in <module>
exec compile(ur’mydiv(Integer(2),Integer(0))’ + ’\n’, ’’, ’single’)

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sympy/plotting/", line 1, in <module>

File "/Users/was/.sage/sage_notebook/worksheets/admin/61/code/336.py", line 8, in mydiv
raise ZeroDivisionError, "Oops -- you can’t divide by 0"

ZeroDivisionError: Oops -- you can’t divide by 0
}}}

{{{
try:

mydiv(2,0)
except ZeroDivisionError, msg:

print "an error occured"
print "error: ", msg

///

an error occured
error: Oops -- you can’t divide by 0
}}}

{{{

///
}}}

<h3>WARNING: Handling multiple exceptions!</h3>

We define a function that can raise three different types of exceptions.

{{{
def mydiv(a,b):

if b == 0:
raise ZeroDivisionError, "Oops -- you can’t divide by 0"

if a == 0:
raise NotImplementedError, "dividing 0 by something is too difficult!"

if a == b:
raise ValueError, "dividing equal things not allowed for no good reason"

return a/b
///
}}}

This is a *very* common and painful mistake people (=me many many times) make:

The code looks fine. What is wrong?

{{{
try:

mydiv(0,4)
except (NotImplementedError, ZeroDivisionError), msg:

print "An error occured"
///

An error occured
}}}

{{{
ZeroDivisionError
///

<type ’exceptions.ZeroDivisionError’>
}}}

{{{
msg
///

NotImplementedError(’dividing 0 by something is too difficult!’,)
}}}

{{{
reset(’ZeroDivisionError’) # reset to default state at startup.
///
}}}

Instead give a tuple of different exception types, and catch the message
as the second output:

{{{
try:

mydiv(2,0)
except (NotImplementedError, ZeroDivisionError, ValueError), msg:

print "An error occured:", msg
///
An error occured: Oops -- you can’t divide by 0
}}}

25

1.2.4 Classes

[[This section is not finished.]]
Class corresponding to the mathematical objects you are working with, e.g.,

a Matrix class for matrices, a DifferentialEquations class for differential equa-
tions, etc. This works very very nicely for expressing mathematics, and is much
different and conceptually superior to what you get in Mathematica and Matlab.
Magma has classes, but users can’t define their own.

The Python class construction allows you to define your own new data types.
It is modeled on C++ classes, though Python classes are simpler and easier to
use. They support both single and multiple inheritance and one can derive from
builtin classes.

Reference: Chapter 9 of the Python Tutorial
You can define any new class you want very easily at any point, even inside

the body of a function, etc. It’s very nice. Here are some examples.

26

{{{
class NaturalNumber:

pass
///
}}}

{{{
A class itself is a Python object, just like anything else

print NaturalNumber
///

__main__.NaturalNumber
}}}

{{{
type(NaturalNumber)
///

<type ’classobj’>
}}}

{{{
v = [NaturalNumber, int, Integer]; v
///

[<class __main__.NaturalNumber at 0x836fd50>, <type ’int’>, <type ’sage.rings.integer.Integer’>]
}}}

{{{
This is how to make instances of a class
n = NaturalNumber()
///
}}}

{{{
n
///

<__main__.NaturalNumber instance at 0x82f98c8>
}}}

{{{
type(n)
///

<type ’instance’>
}}}

{{{
The above class is very boring. Let’s add printing capabilities and a value
class NaturalNumber:

def __init__(self, n):
if not is_Integer(n):

raise TypeError
self.__n = n

def __repr__(self):
return str(self.__n)

///
}}}

{{{
n = NaturalNumber()
///

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/was/.sage/sage_notebook/worksheets/admin/61/code/366.py", line 6, in <module>
exec compile(ur’n = NaturalNumber()’ + ’\n’, ’’, ’single’)

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sympy/plotting/", line 1, in <module>

TypeError: __init__() takes exactly 2 arguments (1 given)
}}}

{{{
n = NaturalNumber(’william’)
///

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/was/.sage/sage_notebook/worksheets/admin/61/code/367.py", line 6, in <module>
exec compile(ur’n = NaturalNumber(\u0027william\u0027)’ + ’\n’, ’’, ’single’)

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sympy/plotting/", line 1, in <module>

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sympy/plotting/", line 4, in __init__

TypeError
}}}

{{{
n
///

william
}}}

{{{
Lets add a little error handling and a set function.
class NaturalNumber:

def __init__(self, n):
if n < 0:

raise ValueError, "n must be nonnegative"
self.__n = n

def number(self):
return self.__n

def __repr__(self):
return str(self.__n)

def set(self):
The set corr. to n is {n-1} union n-1; this is how the integers
are built up using set theory in Axiom Set Theory.
if self.__n > 0:

z = NaturalNumber(self.__n-1).set()
return Set([z]).union(z)

return Set([]) # empty set
///
}}}

{{{
n = NaturalNumber(-1)
///

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/was/.sage/sage_notebook/worksheets/admin/61/code/370.py", line 6, in <module>
exec compile(ur’n = NaturalNumber(-Integer(1))’ + ’\n’, ’’, ’single’)

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sympy/plotting/", line 1, in <module>

File "/Users/was/.sage/sage_notebook/worksheets/admin/61/code/369.py", line 10, in __init__
raise ValueError, "n must be nonnegative"

ValueError: n must be nonnegative
}}}

{{{
n = NaturalNumber(3); n
///

3
}}}

{{{
n.set()
///

{{{{}}, {}}, {{}}, {}}
}}}

{{{
n.number()
///

3
}}}

{{{
for n in [0..4]:

print n, NaturalNumber(n).set()
///

0 {}
1 {{}}
2 {{{}}, {}}
3 {{{{}}, {}}, {{}}, {}}
4 {{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}
}}}

{{{
NaturalNumber(10).set()
///

{{{{{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {}, {{{{}}, {}}, {{}}, {}}, {{{}}, {}}, {{{{}}, {}}, {{{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{}}, {{{{}}, {}}, {{{{}}, {}}, {{{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}}, {{{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {}, {{{{}}, {}}, {{}}, {}}, {{{}}, {}}, {{{{}}, {}}, {{{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{{{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {}, {{{{}}, {}}, {{}}, {}}, {{{}}, {}}, {{{{}}, {}}, {{{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{}}, {{{{}}, {}}, {{{{}}, {}}, {{{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}}, {{{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {}, {{{{}}, {}}, {{}}, {}}, {{{}}, {}}, {{{{}}, {}}, {{{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{}}, {{{{}}, {}}, {{{{}}, {}}, {{{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}}, {{}}, {{{{}}, {}}, {{{{}}, {}}, {{{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}}
}}}

<h2>Single Inheritance</h2>

{{{
In Python a class B inherits from another class A by simply putting the A in parenthesis.
This makes all the methods of class A available for instances of B.
However, if methods are defined in B with the same name as methods in A,
then they redefine them.
///
}}}

{{{
class PositiveNatural(NaturalNumber):

def __init__(self, n):
if n <= 0:

raise ValueError, "n must be positive"
Call the base class constructor
NaturalNumber.__init__(self, n)

def inverse(self): # a new function
return 1/self.number()

def set(self): # refine function from base class
return ’we redefined set’

///
}}}

{{{
n = PositiveNatural(0)
///

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/was/.sage/sage_notebook/worksheets/admin/61/code/378.py", line 6, in <module>
exec compile(ur’n = PositiveNatural(Integer(0))’ + ’\n’, ’’, ’single’)

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sympy/plotting/", line 1, in <module>

File "/Users/was/build/sage-3.0.alpha1/local/lib/python2.5/site-packages/sympy/plotting/", line 4, in __init__

ValueError: n must be positive
}}}

{{{
n = PositiveNatural(3)
n
///

3
}}}

{{{
n.set()
///

’we redefined set’
}}}

{{{
n.inverse()
///

1/3
}}}

{{{
IMPORTANT: instances of derived class should always satisfy an "is a" relationship, are you
are doing something seriously wrong.
///
}}}

{{{

///
}}}

<h2>Multiple Inheritance</h2>

{{{
We can also list several class to derive from.
///
}}}

{{{
class PositiveNatural(NaturalNumber, Rational):

def __init__(self, n):
if n <= 0:

raise ValueError, "n must be positive"
Call the base class constructor
NaturalNumber.__init__(self, n)
Rational.__init__(self, n)

def inverse(self):
"Return the inverse of this positive natural number"
return 1/self.number()

///
}}}

{{{
n = PositiveNatural(10); n
///

10
}}}

{{{
n.inverse()
///

1/10
}}}

{{{
n.factor()
///

2 * 5
}}}

{{{
Method resolution order.
Check to see whether the first (left-most) class defines the function; if so, use it.
If not, try the next class.
///
}}}

{{{
class X:

def foo(self):
print "X"

class A(X):
pass

class B:
def foo(self):

print "B"
class C(A,B):

pass

c = C()
c.foo()
///

X
}}}

27

1.3 Cython: Compiled Python

1.3.1 The Cython project

1.3.2 How to use Cython: command line, notebook

when to use; when good / when bad

1.4 Optimizing Sage Code

Once your code is working correctly (see Section 1.5 below) and you have lots
of examples (hopefully formated as doctests) that illustrate this, you should
next search for serious inefficiencies in your code, which could render your code
nearly useless even if it works. These will typically result from a bad choice
of algorithms, using a function in Sage that itself hasn’t been optimized (but
should someday be!), or using a non-optimal data type or data structure that
works but does so much more slowly than a different choice. In Sections 1.4.1
and 1.4.2 ways to track down such issues.

We present this section before Section 1.5 since many of the fundamental
techniques and ideas are similar but more fun. Also, code that is too slow to be
useful might as well be considered to be buggy.

1.4.1 Example: Optimizing a Function Using A Range of
Manual Techniques

In the following example we implement a naive function to compute the last
d digits of a power ne of an integer n. We then time various parts of the
implementation, and replace bits of code by better code, eventually obtaining a
speedup by a factor of 20, 000!

{{{
def last_digits1(n, e, d):

"""
Return the last d digits of nˆe.
NOTE: First naive version.
"""
return str(nˆe)[-d:]

}}}

28

{{{
time last_digits1(3,10ˆ6,4)
///
’0001’
CPU time: 0.43 s, Wall time: 0.43 s
}}}

Next we rewrite the above function to break up the one lineer into separate
statements, which makes timing each of them easier.

{{{
def last_digits2(n, e, d):

time m = nˆe
time s = str(m)
time t = s[-d:]
return t

}}}

Now we rerun the rewritten function. The three timing outputs correspond in
order to the time commands above:

{{{
time last_digits2(3,10ˆ6,4)
///
Time: CPU 0.04 s, Wall: 0.04 s
Time: CPU 0.39 s, Wall: 0.39 s
Time: CPU 0.00 s, Wall: 0.00 s
’0001’
CPU time: 0.43 s, Wall time: 0.43 s
}}}

From the above, we see that the string conversion takes by far the most time.
The following version of the code avoids that string conversion:

{{{
def last_digits3(n, e, d):

time m = nˆe
time s = m%(10ˆd)
time t = str(s)
time t = ’0’*(d-len(t)) + t
return t

}}}

29

{{{
time last_digits3(3,10ˆ6,4)
///
Time: CPU 0.04 s, Wall: 0.04 s
Time: CPU 0.00 s, Wall: 0.00 s
Time: CPU 0.00 s, Wall: 0.00 s
Time: CPU 0.00 s, Wall: 0.00 s
’0001’
CPU time: 0.04 s, Wall time: 0.04 s
}}}

The code runs so quickly now that we switch to a bigger benchmark.

{{{
time last_digits3(3,10ˆ7,4)
///
Time: CPU 0.53 s, Wall: 0.54 s
Time: CPU 0.01 s, Wall: 0.01 s
Time: CPU 0.00 s, Wall: 0.00 s
Time: CPU 0.00 s, Wall: 0.00 s
’0001’
CPU time: 0.53 s, Wall time: 0.54 s
}}}

From the above we see that the initial powering operation m = ne takes most
of the time (“it dominates”). We rewrite the function below to use a data type
(and consequently an algorithm) that speeds up the powering computation.

{{{
def last_digits4(n, e, d):

time m = Integers(10ˆd)(n)
time s = m ˆ e
time t = str(s)
time t = ’0’*(d-len(t)) + t
return t

}}}

Now we time it:

30

{{{
time last_digits4(3,10ˆ7,4)
///
Time: CPU 0.00 s, Wall: 0.00 s
Time: CPU 0.00 s, Wall: 0.00 s
Time: CPU 0.00 s, Wall: 0.00 s
Time: CPU 0.00 s, Wall: 0.00 s
’0001’
CPU time: 0.00 s, Wall time: 0.00 s
}}}

Victory!? No. At this point maybe we just need a bigger example.

{{{
time last_digits4(389,10ˆ50,10)
///
Time: CPU 0.00 s, Wall: 0.00 s
Time: CPU 0.00 s, Wall: 0.00 s
Time: CPU 0.00 s, Wall: 0.00 s
Time: CPU 0.00 s, Wall: 0.00 s
’0000000001’
CPU time: 0.00 s, Wall time: 0.00 s
}}}

The above timing information is not very useful. Instead we next time the
computation many times using the timeit function. For this, we better get
rid of the print statements, which will throw off the timing.

{{{
def last_digits5(n, e, d):

m = Integers(10ˆd)(n)
s = m ˆ e
t = str(s)
t = ’0’*(d-len(t)) + t
return t

}}}

Using timeit we get the result of running the above function on given input
hundreds of times, and taking the best wall time.

31

{{{
a = 389; b = 10ˆ50; d = 10
timeit(’last_digits5(a,b,d)’) # input must be in quotes
///
625 loops, best of 3: 69.7 s per loop
}}}

That seems really really fast. Can we hope to do much better? We try
switching to using Cython so that our code gets compiled to C, and the C
optimizer might be able to speed it up. WARNING: There is (currently) no
preparsing in Cython or %cython blocks, so it is critical to use ** instead of
ˆ below!

{{{
%cython
def last_digits6(n, e, d):

m = Integers(10**d)(n)
s = m ** e
t = str(s)
t = ’0’*(d-len(t)) + t
return t

}}}

Now we time this:

{{{
time last_digits6(389,10ˆ50,10)
///
’0000000001’
CPU time: 0.01 s, Wall time: 0.08 s
}}}
{{{
a = 389; b = 10ˆ50; d = 10
timeit(’last_digits6(a,b,d)’)
///
625 loops, best of 3: 66.4 s per loop
}}}

Going from 69.7 to 66.4 micro seconds isn’t much of a speed up, and may
just be timing variation. Now imagine that we are getting desperate. Let’s say
we really really care about the speed of this particular function. We are willing
to spend hours (or even days) looking at manuals and source code. We are
willing to put up with the possibility of segfaults, etc. We are willing to learn a

32

little about how to use the GMP C library (http://gmplib.org/). We are
also willing to sacrifice readability.

By reading the source code for each of the underlying powering operations
used in last digits6, which we find in the files

SAGE_ROOT/devel/sage/sage/ring/integer.pyx
SAGE_ROOT/devel/sage/sage/ring/integer.pyx

along with some reading of the GMP manual, we translate last digits6
almost line-for-line into the following code. The key difference is that we avoid
the overhead of creating Sage (or Python) integers when possible. This overhead
matters at this level of optimization.

{{{
%cython
from sage.rings.integer cimport Integer
def last_digits7(Integer n, Integer e, unsigned int d):

cdef mpz_t ten, tenpow
mpz_init_set_ui(ten, 10) # ten = 10
mpz_init(tenpow)
mpz_pow_ui(tenpow, ten, d) # tenpow = 10ˆd
cdef Integer s = Integer()
mpz_powm(s.value, n.value, e.value, tenpow) # m = nˆd % tenpow
mpz_clear(ten); mpz_clear(tenpow) # avoid memory leaks!
t = str(s)
t = ’0’*(d-len(t)) + t
return t

}}}

Does it work? Yes.

{{{
last_digits7(389,10ˆ50,10)
///
’0000000001’
}}}

How fast is it?

33

http://gmplib.org/

{{{
a = 389; b = 10ˆ50; d = 10
timeit(’last_digits7(a,b,d)’)
///
625 loops, best of 3: 30.4 s per loop
}}}

Wow, it’s over twice as fast as last digits6! What should we optimize
next? The pure Python lines

t = str(s)
t = ’0’*(d-len(t)) + t

look like really good candidates. Are they? To find out we simply skip those
two lines to obtain a lower bound on how much time we can possibly save by
optimizing them further. Note that the resulting function last digits8 does
not output the right thing; timing it just gives a useful lower bound.

{{{
%cython
from sage.rings.integer cimport Integer
def last_digits8(Integer n, Integer e, unsigned int d):

cdef mpz_t ten, tenpow
mpz_init_set_ui(ten, 10) # ten = 10
mpz_init(tenpow)
mpz_pow_ui(tenpow, ten, d) # tenpow = 10ˆd
cdef Integer s = Integer()
mpz_powm(s.value, n.value, e.value, tenpow) # m = nˆd % tenpow
mpz_clear(ten); mpz_clear(tenpow) # avoid memory leaks!
return s

}}}
{{{
a = 389; b = 10ˆ50; d = 10
timeit(’last_digits8(a,b,d)’)
///
625 loops, best of 3: 25 s per loop
}}}

Timing this function we see that the time is not dominated by the string stuff
at the end, since we only get a very modest speedup. Is the time dominated by
the Python function call overhead?

34

{{{
%cython
from sage.rings.integer cimport Integer
def last_digits9(Integer n, Integer e, unsigned int d):

return n
}}}
{{{
a = 389; b = 10ˆ50; d = 10
timeit(’last_digits9(a,b,d)’)
///
625 loops, best of 3: 306 ns per loop
}}}

No, just the function call overhead can’t possibly be at fault. Is it the
Integer creation code? We test this possibility by replacing the Integer s
by a GMP mpz t called s.

{{{
%cython
from sage.rings.integer cimport Integer
def last_digits10(Integer n, Integer e, unsigned int d):

cdef mpz_t ten, tenpow
mpz_init_set_ui(ten, 10) # ten = 10
mpz_init(tenpow)
mpz_pow_ui(tenpow, ten, d) # tenpow = 10ˆd
cdef mpz_t s
mpz_init(s)
mpz_powm(s, n.value, e.value, tenpow) # m = nˆd % tenpow
return 0

}}}

{{{
a = 389; b = 10ˆ50; d = 10
timeit(’last_digits10(a,b,d)’)
///
625 loops, best of 3: 24.9 s per loop
}}}

This has almost no effect on the timing. The last obvious thing to try is to
see if removing the mpz powm function makes a difference.

35

{{{
%cython
from sage.rings.integer cimport Integer
def last_digits11(Integer n, Integer e, unsigned int d):

"""
Return the last d digits of nˆe.
"""
cdef mpz_t ten, tenpow
mpz_init_set_ui(ten, 10) # ten = 10
mpz_init(tenpow)
mpz_pow_ui(tenpow, ten, d) # tenpow = 10ˆd
cdef mpz_t s
mpz_init(s)
#mpz_powm(s, n.value, e.value, tenpow) # m = nˆd % tenpow
return 0

}}}

{{{/
a = 389; b = 10ˆ50; d = 10
timeit(’last_digits11(a,b,d)’)
//
625 loops, best of 3: 843 ns per loop
}}}

Thus when we remove the mpz powm statement above the timing goes down
to almost nothing, so that one single call to the GMP C Library dominates
the runtime. Thus our function is probably reasonably optimized at this point
(though of course one could do a little better with more work).

How did we do?

{{{
a = 389; b = 10ˆ5; d = 10
timeit(’last_digits7(a,b,d)’)
///
625 loops, best of 3: 8.69 s per loop
}}}

{{{
a = 389; b = 10ˆ5; d = 10
timneit(’last_digits1(a,b,d)’)
///
5 loops, best of 3: 183 ms per loop
}}}

36

The speedup from the first version to the last version is thus by a factor of
over 20,000:

{{{
183/(8.69/1000)
///
21058.6881472957
}}}

The main observations to take away from the above example are that the
first nice snippet of code you think of to solve a problem may be pretty but
very slow, and to make code fast you should systematically and logically reason
about what could possibly slow the code down then speed up what is slowing
the code down the most, if possible.

1.4.2 Optimizing Using the Python profile Module

You probably got the feeling in Section 1.4.1 that some of what we were doing
there regarding timing could be automated. In fact, Python includes a builtin
profiler, which given an arbitrary expression or statement will run it and create a
report about how much time was spent in each Python function, and how many
times that function was called. The advantage of using profile is that it nicely
automates much of what we did at the beginning above; the disadvantage for us
is that it’s not so useful with Cython code. In constrast, using print statements
and cputime combined with good strategy works in the same way in Python
and Cython or whatever else (but can be much more tedious and biased).

Let’s try Python’s profile module out on the first one-line version of the last
digits function. Recall that the code we will profile is the following:

{{{
def last_digits1(n, e, d):

return str(nˆe)[-d:]
}}}

Now we import and run the profiler:

37

{{{
import profile
profile.run(preparse(’last_digits1(3,10ˆ6,4)’))
///

4 function calls in 0.426 CPU seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)

1 0.426 0.426 0.426 0.426 174.py:6(last_digits1)
1 0.000 0.000 0.000 0.000 :0(setprofile)
1 0.000 0.000 0.426 0.426 <string>:1(<module>)
1 0.000 0.000 0.426 0.426 profile:0(last_digits1(Integer(3),Integer(10)**Integer(6),Integer(4)))
0 0.000 0.000 profile:0(profiler)

}}}

Notice above that we import the profile module then call the function
profile.run on the preparsed version of the input line. If we didn’t preparse
the input line, then 10ˆ6 would be interpreted as pure Python interprets
it, namely as exclusive or of the Python ints 10 and 6. Also, the inputs to
last digits1 would all be Python ints instead of Sage Integers.

Type profile.run? for more help on how the profiler works. For far
more information, see the section The Python Profiler in the Python Library
Reference (see http://docs.python.org/lib/profile.html).

Note that profiling code can take a lot longer than running the code not
under profile. There is also a module cProfile that is supposed to work
exactly like profile, but is much faster. However, cProfile is new and not
so well tested.

The following Sage interact allows you to profile a line of code easily in the
Sage notebook.

html(’<h2>Profile the given input</h2>’)
import cProfile; import profile
@interact
def _(cmd = ("Statement", ’divisors(10ˆ10)’),

do_preparse=("Preparse?", True),
cprof =("cProfile?", False)):

if do_preparse: cmd = preparse(cmd)
print "<html>" # a trick to avoid word wrap
if cprof:

cProfile.run(cmd)
else:

profile.run(cmd)
print "</html>"

38

http://docs.python.org/lib/profile.html

1.5 Debugging Sage Code

There are many sophisticated tools for debugging and profiling Python code.
The following is a typical quote that one hears from top programmers:

“For debugging, I mostly use print and unit tests for Python and
print, tests and valgrind for Cython, so I can’t really comment on
the debugging environments.” – Stefan Behnel (Cython developer),
2008-04-11

In practice, many programmers that I know debug using a combination of rea-
soning very systematically about their code, print statements, and a debugger
such as pdb or gdb.

This section describes how to debug Python programs using some strategies
that involve the above tools.

Section 1.5.1 will hopefully increase your general skepticism toward the cor-
rectness of mathematical software. Section 1.5.2 explains various techniques for
using print statements in Sage code to obtain information about what is happen-
ing. In Section 1.5.3 we dive into pdb, which is a nice interactive command-line
debugger, and in Section 1.5.4 we discuss using gdb with Sage, which is an in-
teractive command-line debugger for tracing down issues with Cython code (or

39

more general C/C++ code). It is critical when searching for a bug in code to
systematically use the tools you know well, so Section 1.5.5 describes strategies
for narrowing down the source of a problem through a combination of logi-
cal deduction and data gathering via print statements and more sophisticated
debugging tools.

1.5.1 Be Skeptical!

The best perspective to take when writing or using code is to assume that it
has bugs. Be skeptical! If you read source code of Sage or its components
you’ll sometimes see things that will make you worry. This is a good thing.
For instance, this occurs in a comment in the Sage code by Jonathan Bober for
computing the number of partitions of an integer (the number of partitions
command):

// Extensive trial and error has found 3 to be the smallest
// value that doesn’t seem to produce any wrong answers.
// Thus, to be safe, we use 5 extra bits.

Note, by the way, that Bober’s code for computing the number of partitions
of an integer is currently faster than anything else in the world, and it is not
known to have any bugs.

A healthy amount of skepticism and worry is a good to cultivate when doing
computational mathematics. Never listen to anybody who suggests you do
otherwise. Similar issues occur in closed source systems such as Mathematica,
but you don’t get to see them – that doesn’t make the chance of bugs less likely.
In fact, the Mathematica documentation says the following:

But just as long proofs will inevitably contain errors that go un-
detected for many years, so also a complex software system such
as Mathematica will contain errors that go undetected even after
millions of people have used it.

There can even be bugs in the implementation of basic arithmetic, even at the
hardware level! [[reference the pentium hardware bug from the 1990s that was
found by a number theorist trying to debug his code]] So be skeptical when you
do computations. Always think about what mathematical computations tell
you, and try to find ways to double check results.

It almost goes without saying, but beautifully written, well-documented code
that has been around for a long time and used a great deal is generally much
less likely to be seriously buggy than newly written code. A great example of
such high quality – by aging – code is NTL (the Number Theory Library [[url]]).
Quality code that has been used for years, and thus likely has few bugs is like
gold – treat it that way; don’t just toss it out and assume that something new
that you sit down and write is likely to be better. That said, if you persist you
can and will write beautiful code that equals or surpasses anything ever done

40

before. When you do this, please consider contributing you code to the Sage
project.

There are several good reasons to write new code. One excellent reason is
that you simply want to understand an algorithm well, perhaps one you’re learn-
ing about in a course, a book, a paper, or that you just designed. Implementing
an algorithm correctly forces you to understand every detail, which can provide
new insight into the algorithm. If you’re implementing a nontrivial algorithm
that is described in a book or paper, the chances that it is wrong in some way
(e.g., a typo in a formula, a fundamental mistake in the algorithm, whatever)
is quite high – so you will definitely learn something, and possibly improve the
mathematical literature while you’re at it.

Another great reason to write new code is to implement an algorithm that
isn’t available in Sage. When you do this, make sure to be skeptical about
the correctness of your code; always test it extensively, document it, etc., just
to increase the chance that it might always work correctly. And if there is
any way to independently verify correctness of the output of code, attempt to
implement this too. If the algorithm is available in other mathematical software
such as Maple or Mathematica, and you have that program, use the interfaces
described in Section 1.7 to write code that automatically tests the output of
your implementation against the output of the implementation in that other
system. Include such test code in your final product.

1.5.2 Using Print Statements

Yes, you can use print statements for debugging your code. There is no shame
in this! Especially when using Python where you do not have to recompile every
time, this can be a particularly useful technique.

specific techniques for using print statements (how to figure out things)
use attach for .py or .sage files.
what to print – get memory usage, cputime, walltime,

1.5.3 Debugging Python using pdb

Use command line and do %pdb

1.5.4 Debugging Using gdb

how to trace things through
bt is enough to get pretty far
multiple processes can be confusing

41

1.5.5 Narrowing down the problem

1.6 Source Control Management

1.6.1 Distributed versus Centralized

1.6.2 Mercurial

1.7 Using Mathematica, Matlab, Maple, etc.,
from Sage

A distinctive feature of Sage is that Sage supports using Maple, Mathematica,
Octave, Matlab, and many other programs from Sage, assuming you have the
relevant program (there are some caveats). This makes it much easier to combine
the functionality of these systems with each other and Sage.

Before discussing interfaces in more detail, we make a few operating system
dependent remarks.

what works on all os’s; in particular gap, singular, gp, maxima, always there.
what works on linux
on os x
on windows
—-
example of using gp to do something.
example of using mathematica
example of using maple
example of using matlab/octave
—-
eval versus call.
Discussion of what goes on behind the scenes. Files used for large inputs –

named pipes for small.
—-
Warning– multiple processes; complicated; can get parallel, which is harder

to think about...

42

Chapter 2

Algebraic Computing

Algebraic computing is concerned with computing with the algebraic objects of
mathematics, such as arbitrary precision integers and rational numbers, groups,
rings, fields, vector spaces and matrices, and other objects. The tools of alge-
braic computing support research and education in pure mathematics, underly
the design of error correcting codes and cryptographical systems, and play a
role in scientific and statistical computing.

2.1 Groups, Rings and Fields

2.1.1 Groups

2.1.2 Rings

2.1.3 Fields

2.2 Number Theory

2.2.1 Prime numbers and integer factorization

2.2.2 Elliptic curves

2.2.3 Public-key cryptography: Diffie-Hellman, RSA, and
Elliptic curve

2.3 Linear Algebra

2.3.1 Matrix arithmetic and echelon form

Matrix multiplication using a numerical BLAS (in both mod p and over ZZ
cases)

43

2.3.2 Vector spaces and free modules

2.3.3 Solving linear systems

Applicatin: computing determinants over ZZ

2.4 Systems of polynomial equations

2.5 Graph Theory

2.5.1 Creating graphs and plotting them

2.5.2 Computing automorphisms and isomorphisms

2.5.3 The genus and other invariants

44

Chapter 3

Scientific Computing

Scientific computing is concerned with constructing mathematical models and
using numerical techniques to solve scientific, social, and engineering problems.

45

3.1 Floating Point Numbers

3.1.1 Machine precision floating point numbers

3.1.2 Arbitrary precision floating point numbers

3.2 Interval arithmetic

3.3 Root Finding and Optimization

3.3.1 Single variable: max, min, roots, rational root iso-
lation

3.3.2 Multivariable: local max, min, roots

3.4 NumericalSolution of Linear Systems

3.4.1 Solving linear systems using LU factorization

3.4.2 Solving linear systems iteratively

3.4.3 Eigenvalues and eigenvectors

3.5 Symbolic Calculus

3.5.1 Symbolic Differentiation and integration

3.5.2 Symbolic Limits and Taylor series

3.5.3 Numerical Integration

46

Chapter 4

Statistical Computing

4.1 Introduction to R and Scipy.stats

4.1.1 The R System for Statistical Computing

4.1.2 The Scipy.stats Python Library

4.2 Descriptive Statistics

4.2.1 Mean, standard deviation, etc.

4.3 Inferential Statistics

4.3.1 Simple Inference

4.3.2 Conditional Inference

4.4 Regression

4.4.1 Linear regression

4.4.2 Logistic regression

47

Bibliography

[ABC+] B. Allombert, K. Belabas, H. Cohen, X. Roblot, and I. Zakharevitch,
PARI/GP, http://pari.math.u-bordeaux.fr/.

[BCP97] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system.
I. The user language, J. Symbolic Comput. 24 (1997), no. 3–4, 235–
265, Computational algebra and number theory (London, 1993). MR
1 484 478

[jQu] jQuery, A new type of javascript library, http://www.
4dsolutions.net/ocn/overcome.html.

[Pex] Pexpect, A pure python expect-like module, http://www.noah.
org/wiki/Pexpect#Download and Installation.

[PG07] Fernando. Pérez and Brian E. Granger, IPython: a System for Inter-
active Scientific Computing, Comput. Sci. Eng. 9 (2007), no. 3, 21–29,
University of Colorado APPM Preprint #549.

[Twi] Twisted, A framework for networked applications, http://
twistedmatrix.com.

48

http://www.4dsolutions.net/ocn/overcome.html
http://www.4dsolutions.net/ocn/overcome.html
http://www.noah.org/wiki/Pexpect#Download_and_Installation
http://www.noah.org/wiki/Pexpect#Download_and_Installation
http://twistedmatrix.com
http://twistedmatrix.com

	Computing with Sage
	Installing and Using Sage
	Installing Sage
	The command line and the notebook
	Loading and saving variables and sessions

	Python: the Language of Sage
	Lists, Tuples, Strings, Dictionaries and Sets
	Control Flow
	Errors Handling
	Classes

	Cython: Compiled Python
	The Cython project
	How to use Cython: command line, notebook

	Optimizing Sage Code
	Example: Optimizing a Function Using A Range of Manual Techniques
	Optimizing Using the Python profile Module

	Debugging Sage Code
	Be Skeptical!
	Using Print Statements
	Debugging Python using pdb
	Debugging Using gdb
	Narrowing down the problem

	Source Control Management
	Distributed versus Centralized
	Mercurial

	Using Mathematica, Matlab, Maple, etc., from Sage

	Algebraic Computing
	Groups, Rings and Fields
	Groups
	Rings
	Fields

	Number Theory
	Prime numbers and integer factorization
	Elliptic curves
	Public-key cryptography: Diffie-Hellman, RSA, and Elliptic curve

	Linear Algebra
	Matrix arithmetic and echelon form
	Vector spaces and free modules
	Solving linear systems

	Systems of polynomial equations
	Graph Theory
	Creating graphs and plotting them
	Computing automorphisms and isomorphisms
	The genus and other invariants

	Scientific Computing
	Floating Point Numbers
	Machine precision floating point numbers
	Arbitrary precision floating point numbers

	Interval arithmetic
	Root Finding and Optimization
	Single variable: max, min, roots, rational root isolation
	Multivariable: local max, min, roots

	NumericalSolution of Linear Systems
	Solving linear systems using LU factorization
	Solving linear systems iteratively
	Eigenvalues and eigenvectors

	Symbolic Calculus
	Symbolic Differentiation and integration
	Symbolic Limits and Taylor series
	Numerical Integration

	Statistical Computing
	Introduction to R and Scipy.stats
	The R System for Statistical Computing
	The Scipy.stats Python Library

	Descriptive Statistics
	Mean, standard deviation, etc.

	Inferential Statistics
	Simple Inference
	Conditional Inference

	Regression
	Linear regression
	Logistic regression

