
An Introduction to

Algebraic, Scientific, and Statistical Computing:

an Open Source Approach Using Sage

William A. Stein

April 3, 2008

Abstract

This is an undergraduate textbook about algebraic, scientific, and statistical
computing using the free open source mathematical software system Sage.

Contents

1 Computing with Sage 6
1.1 Installing and Using Sage . 6

1.1.1 Installing Sage . 6
1.1.2 The command line and the notebook 8
1.1.3 Loading and saving variables and sessions 12

1.2 Python: the Language of Sage . 14
1.2.1 Lists, Tuples, Strings, Dictionaries and Sets 14
1.2.2 Control Flow, Errors and Exceptions 18
1.2.3 Classes and Inheritence 18

1.3 Cython: Compiled Python . 18
1.3.1 The Cython project . 18
1.3.2 How to use Cython: command line, notebook 18

1.4 Debugging and Profiling . 18
1.4.1 Using Print Statements 20
1.4.2 Debugging Python using pdb 20
1.4.3 Debugging Cython using gdb 20

1.5 Source Control Management . 20
1.5.1 Distributed versus Centralized 20
1.5.2 Mercurial . 20

1.6 Using Mathematica, Matlab, Maple, etc., from Sage 20

2 Algebraic Computing 22
2.1 Groups, Rings and Fields . 22

2.1.1 Groups . 22
2.1.2 Rings . 22
2.1.3 Fields . 22

2.2 Number Theory . 22
2.2.1 Prime numbers and integer factorization 22
2.2.2 Elliptic curves . 22
2.2.3 Public-key cryptography: Diffie-Hellman, RSA, and El-

liptic curve . 22
2.3 Linear Algebra . 22

2.3.1 Matrix arithmetic and echelon form 22
2.3.2 Vector spaces and free modules 23

1

2.3.3 Solving linear systems . 23
2.4 Systems of polynomial equations 23
2.5 Graph Theory . 23

2.5.1 Creating graphs and plotting them 23
2.5.2 Computing automorphisms and isomorphisms 23
2.5.3 The genus and other invariants 23

3 Scientific Computing 24
3.1 Floating Point Numbers . 25

3.1.1 Machine precision floating point numbers 25
3.1.2 Arbitrary precision floating point numbers 25

3.2 Interval arithmetic . 25
3.3 Root Finding and Optimization 25

3.3.1 Single variable: max, min, roots, rational root isolation . 25
3.3.2 Multivariable: local max, min, roots 25

3.4 NumericalSolution of Linear Systems 25
3.4.1 Solving linear systems using LU factorization 25
3.4.2 Solving linear systems iteratively 25
3.4.3 Eigenvalues and eigenvectors 25

3.5 Symbolic Calculus . 25
3.5.1 Symbolic Differentiation and integration 25
3.5.2 Symbolic Limits and Taylor series 25
3.5.3 Numerical Integration . 25

4 Statistical Computing 26
4.1 Introduction to R and Scipy.stats 26

4.1.1 The R System for Statistical Computing 26
4.1.2 The Scipy.stats Python Library 26

4.2 Descriptive Statistics . 26
4.2.1 Mean, standard deviation, etc. 26

4.3 Inferential Statistics . 26
4.3.1 Simple Inference . 26
4.3.2 Conditional Inference . 26

4.4 Regression . 26
4.4.1 Linear regression . 26
4.4.2 Logistic regression . 26

2

Preface

This is an undergraduate textbook about Sage, which is a free open source com-
putational environment for the mathematical sciences. Sage includes optimized
full-featured implementations of algorithms for compuations in pure mathemat-
ics, applied mathematics, and statistics.

I started the Sage project in late 2004 as a project to provide a viable
open source free alternative to the Magma computer algebra system [BCP97].
My main motivation for this was frustration with not being allowed to easily
change or understand the internals of Magma, worry about the longterm future
of Magma, and concern that students and researchers in number theory could
not easily use the Magma-based tools that I had spent six hard years developing.
I started Sage as a new project instead of switching from Magma to an existing
open source system, since the only free open source software for number theory
is PARI [ABC+], whose functionality was far behind that of Magma in several
areas of interest to me (exact linear algebra and arithmetic of algebraic curves).
Since PARI development moves slowly (or I am a very impatient person!), I
didn’t think it was likely this would change in the near future. PARI is a
superb program – it just doesn’t meet my needs, and has design constraints
that make it impossible to modify so that it does so.

The Sage mathematical software system takes a fresh approach to mathemat-
ical software development and architecture. For instance, one major distinction
between Sage and older systems is that Sage uses a standard language. Maple,
Mathematica, Magma, Matlab, PARI, Gap, etc., all use their own special pur-
poses language written just for mathematics. In sharp contract, one works with
Sage using Python, which is one of the world’s most popular general purpose
scripting languages. This has some drawbacks, e.g., some mathematical expres-
sions can be more difficult to express in Python than in Mathematica (say), but
the overall pros greatly outweigh the cons. By using Python, one can use al-
most anything ever written in Python directly in Sage. And there is much useful
Python code out there that adddresses a wide range of application areas1:

• “Python is fast enough for our site and allows us to produce maintainable
features in record times, with a minimum of developers,” said Cuong Do,
Software Architect, YouTube.com.

1These quotes came from the Python website.

3

• “Google has made no secret of the fact they use Python a lot for a number
of internal projects. Even knowing that, once I was an employee, I was
amazed at how much Python code there actually is in the Google source
code system.”, said Guido van Rossum, Google, creator of Python.

• “Python plays a key role in our production pipeline. Without it a project
the size of Star Wars: Episode II would have been very difficult to pull
off. From crowd rendering to batch processing to compositing, Python
binds all things together,” said Tommy Burnette, Senior Technical Direc-
tor, Industrial Light & Magic.

Instead of writing many of the core libraries from scratch like Maple, Math-
ematica, Magma, Gap, PARI, Singular, and Matlab did, in Sage I assembled
together the best open source software out there, and built on it, always making
certain that the complete system was easily buildable from source on a reason-
able range of computers. I was able to do this to a large extent with Sage
because of fortuitous timing: the components were out there and mature, their
code is stable, and their copyright licences are clear and compatible (none of this
was the case when the afformentioned math software was started). Of course
there are drawbacks to this approach. Some of the upstream libraries can be
difficult to understand, are written in a range of languages, and have different
conventions than Sage. By strongly encouraging good relations between the
Sage project and the projects that create many of the components of Sage, we
turn these weakness into strengths.

A wide and vibrant community of developers and users have become involved
with Sage. Due to the broad interests of this large community of developers,
Sage has grown into a project with the following specific goal:

Mission Statement: Provide a viable free open source alternative
to Magma, Maple, Mathematica, and Matlab.

Among many other things, this mission statement implies that in order to suc-
ceed Sage should have a graphical user interface, 2D and 3D graphics, support
for statistical and numerical computation, and much more.

Sage is starting to be recognized worldwide as a useful tool in mathematics
education and research. Sage won first prize in the Scientific Category of the
2007 Tropheés du Libre.

4

The Sage development model has also matured. There are now regular
releases of Sage about once every two weeks, and all code that goes into Sage
is peer reviewed.

Sage has also received generous financial support from mathematics insti-
tutions (including the Clay Mathematics Institute, MSRI, PIMS, and IPAM),
universities such as University of Washington and University of Bristol, and
from the National Science Foundation, the Department of Defense, and Mi-
crosoft Corporation.

Exercise 0.1.

1. Make a list of 5 free open source programs you have used.

2. For each program, write down a corresponding commercial program, if it
exists.

3. List some of the pros and cons from your perspective of the free program
versus the commercial version.

5

Chapter 1

Computing with Sage

1.1 Installing and Using Sage

1.1.1 Installing Sage

You are strongly encouraged to follow along with all examples in this book. Get
Sage up and running now! Try out everything, modify things, experiment, look
under the hood, and do all the exercises!

The website http://sagemath.org/lists.html lists the two main Sage
mailing list: sage-support and sage-devel. The first is for all questions about
using and installing Sage, and for bug reports. The second is for discussion
related directly to modifying and improving Sage. Join these lists; note that
you will likely want to select daily digest for message deliver, so that you receive
one email a day instead of 50!

6

http://sagemath.org/lists.html

If you find a bug in Sage, we want to know about it! Send an email to
sage-support describing the bug in as much detail as you can.

The exact details for installing Sage will change over time. The following
briefly describes the situation in April 2008; for more details see the Sage in-
stallation guide.

You install Sage on any computer either by extracting a pre-compiled binary
or building from source.

To install a binary, download the binary (either a .tar.gz file, a .dmg file,
or a .7z file) from http://sagemath.org, extract the file, and following the
directions in the README.txt file. In most cases, you can simply put the
extracted sage-x.y.z directory somewhere, and run Sage from there.

Installing Sage on Microsoft Windows currently involves installing the VMware
player program, then running a virtual machine. This will likely change signifi-
cantly within a year.

Currently you can only build Sage from source on Linux and OS X (or
on Windows in a Linux virtual machine). To build from source, which will
take over an hour, first download sage-x.y.z.tar from http://sagemath.
org/download.html. Once you have downloaded Sage, extract the “tarball” as
follows:

$ tar xvf sage-x.y.z.tar

Then run the make command in the sage-x.y.z directory:
$ cd sage-x.y.z
$ make
... 137600 lines of output ...
real 102m57.600s
user 71m10.115s
sys 14m56.116s
To install gap, gp, singular, etc., scripts
in a standard bin directory, start sage and
type something like

sage: install_scripts(’/usr/local/bin’)
at the SAGE command prompt.

SAGE build/upgrade complete!

The above should work if you have gcc, g++, make, and a few other prerequi-
sites installed (Sage includes almost all depedencies), and are using a supported
architecture and operating system. An advantage of building from source is that
if you can build from source, then you can change absolutely any part of Sage
and use the modified version. If you run into trouble, email sage-support.

Exercise 1.1. Install Sage on a computer.

7

http://sagemath.org
http://sagemath.org/download.html
http://sagemath.org/download.html

1.1.2 The command line and the notebook

The command line and the Sage notebook provide two complementary ways
for you to interactively work with Sage. The command line provides a simple
and powerful way to type Sage commands. The notebook provides a modern
AJAX web-browser based graphical interface to Sage. Both the notebook and
command line have advantages and disadvantages, and you will want to become
familiar with each. For example, the notebook is better for graphics, whereas
the command line is better for debugging and profiling code (see Section 1.4).

In Linux or OS X, start the command line by typing ./sage in the direc-
tory where you installed Sage, or just type sage if the Sage install directory
sage-x.y.z is in your PATH. In Windows, after starting the Sage vmware im-
age, type sage at the login prompt.

In Linux or OS X, start the notebook by typing ./sage -notebook in the
directory where you installed Sage:

teragon:~ was$ sage -inotebook
--
| SAGE Version 2.10.4, Release Date: 2008-03-16 |
Type notebook() for the GUI, and license() for information.

Please wait while the SAGE Notebook server starts...
...
The notebook files are stored in: /Users/was/.sage//sage_notebook
WARNING: Running the notebook insecurely may be dangerous.
Make sure you know what you are doing.
**
* *
* Open your web browser to http://localhost:8000 *
* *
**

In Windows, type notebook at the login prompt, then use your web browser to
navigate to the URL that is displayed. You can also use Sage without installing
it on your computer by signing up for an account at https://sagenb.org.

8

https://sagenb.org

Exercise 1.2.
1. Using the Sage command line, compute 123 + 456.

2. Using the Sage notebook, compute 456 + 789.

Tab completion and help are incredibly useful features of both the command
line and notebook, and work in almost the same way in both. This is useful in
two ways. First, if you type the first few letters of a command, then press the
tab key, you’ll see all commands that begin with those first few letters.

The second way in which tab completion is useful is that it shows you most
of the things you can do with something. For example, if n is an integer and
you type n.[tab key], you’ll see a list of all the functions that you can call on
n. For example, the code n=2008 in Sage sets the variable n equal to the integer
2008:

sage: n = 2008

Then type n.fa[tab key] (press the tab key after typing n.fa), you’ll see that
n.factor is a command associated to n. Type n.factor() to factor n:

sage: n = 2008
sage: n.factor()
2^3 * 251

Here we are showing all input and output as if they were typed at the
command line. If you’re using the notebook press shift-enter after typing n =
2008 into an input cell. After computing the factorization you will see something
like this:

9

Exercise 1.3. Use tab completion to determine how to compute the factorial
of 100.

In the command line every command you type is recorded in the history.
Use the up arrow to scroll through previous commands; this history even works
if you quit Sage and restart. Likewise, in the notebook previous commands are
visibly recorded in input cells, and you can click or use the arrow keys to move
to a previous cell and press shift-enter to evaluate it again.

Exercise 1.4. 1. Quit the Sage command line, restart Sage, and press the
up arrow until you see n = 2008. Change 2008 to 2009 and press enter.
Then factor the result, again using the up arrow to select n.factor().

2. In the Sage notebook click and change n = 2008 to n = 2009, then press
shift-enter twice to see how 2009 factors.

If n is any object in Sage or foo any function (even the function n.factorial),
type ? after it and press enter to see a description of the command along with

10

examples. In the notebook, you can also type n.factorial(and press the tab
key for popup help. If you put two question marks instead of one you’ll see
the help and source code of the function or object, i.e., the computer code that
defines that function or object.

There are several ways to time how long it takes for something in Sage to
run. If the command is just one line, put the word time at the beginning of the
line, e.g.,

sage: time n = factorial(10^5)
CPU time: 0.10 s, Wall time: 0.10 s

Exercise 1.5. Make up a line of input to Sage that takes at least ten seconds
to evaluate.

You can time execution of all the code in a notebook cell by putting %time
at the beginning of the cell. For example:

{{{
%time
n = factorial(10^5)
///
CPU time: 0.10 s, Wall time: 0.10 s
}}}

Above we have used the following notation:
{{{
INPUT
///
OUTPUT
}}}

Thus the above looks like the following in the notebook:

11

You can also time execution of a block of code by typing t = cputime()
before the block, then after the block typing cputime(t). This will output
the number of CPU seconds that elapsed during the computation. For the
physical amount of time that actually elapsed on your “wall” clock, type t =
walltime() then later type walltime(t). This can be useful, especially in
complicated programs.

Once you start writing complicated Sage programs, especially when using
the command line, you’ll want to place code in an external file and edit it with
a standard code editor (use the special Python mode if your editor has one).
This works very well in Linux and OS X, where you put the code in the file of
your choice and type

sage: load filename.sage

to execute all the code in filename.sage. Under Windows, the situation is
currently more complicated – you either have to configure VMware shared fold-
ers, or regularly upload the file to the Sage notebook using Data --> Upload
or Create File. Another separate option1 is to use the Windows program
WinSCP Using WinSCP you can login to the VMware machine (use login name
’login’ and password ’sage’). Then you can select edit from the context menu
and edit files. WinSCP takes care of automatically uploading and download-
ing the modified version of the file whenever you change it. If you call the file
filename.sage, you would type the following to load the file you’re editing:

sage: load /home/login/filename.sage

For OS X or Linux users, if you’re constantly editing filename.sage, and
find yourself regularly typing load filename.sage into Sage, you should in-
stead attach filename.sage by typing

sage: attach filename.sage

This works exactly like load filename.sage, except that if filename.sage is
changed and you execute a new command, Sage reloads filename.sage before
executing the command. Try it; you’ll like it.

Exercise 1.6. Create a file hi.sage that contains the line print "hello".
Load that file into Sage using the load command, and see that hello is printed
out. If you’re using OS X or Linux, attach hi.sage, then change “hello” to
something else, then type something at the Sage prompt – you should see some-
thing besides hello printed out.

1.1.3 Loading and saving variables and sessions

As mentioned above, in Sage you create a new variable by assigning to it. E.g.,
typing n = 2008 creates a new variable n and assigns the value 2008 to it. Most

1suggested by Lars Fischer; the author has not yet tried this!!

12

(but not all!2) individual variables, even incredibly complicated ones, can be
easily saved or loaded to disk using the save and load functions. This can be
extremely useful if it takes a long time to compute a variable, and you want to
save it to use it again later.

First we discuss using save and load from the command line, then from the
notebook. In the following session, we set n to 2008, then save n to the variable
myvar.sobj, quit sage, restart, and reload the value of n from that file.

teragon:~ was$ sage
sage: n = 2008
sage: save(n, ’myvar’)
sage: quit
Exiting SAGE (CPU time 0m0.02s, Wall time 0m41.28s).
teragon:~ was$ ls -l myvar.sobj
-rw-r--r-- 1 was was 48 Mar 26 22:40 myvar.sobj
teragon:~ was$ sage
sage: load(’myvar.sobj’)
2008

Note that .sobj is added to the end of the filename, if it isn’t given. Also, all
saved objects are compressed to save disk space.

Using save and load from the notebook is a bit different, since every notebook
cell is executed in a different subdirectory. In the following example, in the first
cell the value of n is saved in the file myvar.sobj in the current cell directory.
In general, in the notebook every file created in the current (cell) directory is
either displayed embedded in the output or a link to it is created – you could
right click and download myvar.sobj to your hard drive if you wanted. In the
second example we save the value of n to the file myvar.sobj in the directory
above the current cell directory. This directory is fixed independent of the cell
we’re working in, so we can load myvar.sobj in another cell, which we do.

Not only can you load and save individual objects, but you can save all
2See the Python documentation on the pickle module.

13

save-able objects defined in the current session.3 In this example we define two
variables n = 2008 and m = −2/3, save the session, then restart, load the
session and see that n and m are again defined.

teragon:~ was$ sage
sage: n = 2008
sage: m = -2/3
sage: save_session(’session’)
sage: quit
Exiting SAGE (CPU time 0m0.08s, Wall time 9m11.00s).
teragon:~ was$ sage
losage: load_session(’session’)
sage: n
2008
sage: m
-2/3

Think of save session as being sort of like “saving your game” in a video game.

Exercise 1.7. (Command line only.) A useful feature of session loading and
saving is that you can save two separate sessions and load them at the same
time. Instead of the second loaded session overwriting the first completely, the
two are merged. Try this out – define several variables in two separate sessions,
save both sessions. Quit, load one session, then load the other and see that the
sessions are merged.

Behind the scenes session loading and saving works essentially by calling
save on every currently defined variable – the objects that can’t be saved just
don’t get saved.

1.2 Python: the Language of Sage

Python has excellent support for basic data structures, including lists, tuples,
strings, dictionaries, sets, and user-defined classes. Functions, control flow, and
error handling are also all well supported. In this section we just give a very
brief overview with exercises of the Python language, which should be enough
to get you going. There are many excellent books about the basics of Python;
my favoriates are the official Python Tutorial, Dive Into Python, and Python in
a Nutshell, and I strongly encourage you to look at them. In fact, the examples
below very closely follow those in the Python Tutorial.

1.2.1 Lists, Tuples, Strings, Dictionaries and Sets

The five basic data structures you will use constantly in Python programming
are lists, tuples, strings, dictionaries, and sets.

3WARNING: As of March 30, 2008, save session in the Sage notebook is broken.

14

Lists

Lists and tuples are the two main sequence types, and both allow you to store
and work with arbitrary finite sequences of Python objects. Both are indexed
starting at 0. The main difference between lists and tuples is that lists are
mutable, whereas tuples are immutable; this means that you can easily change
lists, which has some subtle pros and cons as we will see below.

You can create a list by explicitly listing its elements, by adding, multi-
plyling, appending to and slicing existing lists:

sage: a = [’spam’, ’eggs’, 100, 1234]; a
[’spam’, ’eggs’, 100, 1234]
sage: a[0]
’spam’
sage: a[3]
1234
sage: a[-2]
100
sage: a[1:-1]
[’eggs’, 100]
sage: a[:2] + [’bacon’, 2*2]
[’spam’, ’eggs’, ’bacon’, 4]
sage: 3*a[:3] + [’Boo!’]
[’spam’, ’eggs’, 100, ’spam’, ’eggs’, 100, ’spam’, ’eggs’, 100, ’Boo!’]
sage: a.append(314); a
[’spam’, ’eggs’, 100, 1234, 314]

Absolutely anything can go in a list, e.g., other lists, etc., and you can change
the entries:

sage: b = [[1,2], 1.234, 3/4, vector([1/3,2,3]), [[1]]]; b
[[1, 2], 1.23400000000000, 3/4, (1/3, 2, 3), [[1]]]

Assignment to lists is also quite flexible. For example, if you use a negative
index the index counts down from the right. You can also use the : slicing
notation to change whole sections of a list at once.

15

sage: b[0] = 5; b
[5, 1.23400000000000, 3/4, (1/3, 2, 3), [[1]]]
sage: b[-1] = ’hello’; b
[5, 1.23400000000000, 3/4, (1/3, 2, 3), ’hello’]
sage: b[:2]
[5, 1.23400000000000]
sage: b[:2] = [1,2,3,4]; b
[1, 2, 3, 4, 3/4, (1/3, 2, 3), ’hello’]
sage: b[1:4] = []; b
[5, ’hello’]
sage: len(b) # the length of b
2

There many list methods such as append, remove, sort, index, etc. Make a list
v then type v.[tab key] to see a list of those methods.

You can also use the beautiful and powerful list comprehension construction
to make new lists from old lists. This is similar to “set builder notation” in
mathematics:

sage: vec = [2, 4, 6]
sage: [3*x for x in vec]
[6, 12, 18]
sage: [3*x for x in vec if x > 3]
[12, 18]
sage: [3*x for x in vec if x < 2]
[]
sage: [[x,x^2] for x in vec]
[[2, 4], [4, 16], [6, 36]]
sage: vec1 = [2, 4, 6]
sage: vec2 = [4, 3, -9]
sage: [x*y for x in vec1 for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
sage: [x+y for x in vec1 for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]
sage: [vec1[i]*vec2[i] for i in range(len(vec1))]
[8, 12, -54]

Finally use the del statement to delete an element of a list or a section of a
list:

16

sage: a = [-1, 1, 66.25, 333, 333, 1234.5]; a
[-1, 1, 66.2500000000000, 333, 333, 1234.50000000000]
sage: del a[0]
sage: a
[1, 66.2500000000000, 333, 333, 1234.50000000000]
sage: del a[2:4]
sage: a
[1, 66.2500000000000, 1234.50000000000]
sage: del a[:]
sage: a
[]

Note in particular the command del a[2:4] which deletes the entries of a in
positions 2 and 3. These are exactly the entries you see if you type a[2:4].

Tuples

As mentioned above, tuples are sequence types like lists, except the objects in
the tuple can’t be deleted or replaced once the tuple has been created.

sage: t = (12345, 54321, ’hello!’)
sage: t[0]
12345
sage: t
(12345, 54321, ’hello!’)
sage: type(t)
<type ’tuple’>
sage: t[0] = 5 # tuples are immutable
Traceback (most recent call last):
...
TypeError: ’tuple’ object does not support item assignment
sage: # Tuples may be nested:
sage: u = (t, (1, 2, 3, 4, 5))
sage: u
((12345, 54321, ’hello!’), (1, 2, 3, 4, 5))

There is also an eloquent tuple unpacking system, which makes it simple to
assign several variables to the entries of a tuple.

sage: t = (12345, 54321, ’hello!’); t
(12345, 54321, ’hello!’)
sage: # tuple UNPACKING
sage: x, y, z = t
sage: print x, y, z
12345 54321 hello!

17

Tuple unpacking also supports having functions to have multiple return vari-
ables, without running into the numerous painful gotcha’s that other languages
(e.g., Matlab and Magma) suffer from having multiple return variables.

sage: def foo(a,b):
... return a+b, a-b
sage: c,d = foo(2,3) # multiple return values!
sage: print c, d
5 -1

1.2.2 Control Flow, Errors and Exceptions

- Loops, functions, control statements; putting code in files and modules (im-
port/load/attach)

1.2.3 Classes and Inheritence

- user-defined classes; object-oriented programming and mathematics, inheri-
tence

1.3 Cython: Compiled Python

1.3.1 The Cython project

1.3.2 How to use Cython: command line, notebook

when to use; when good / when bad

1.4 Debugging and Profiling

The best perspective to take when writing or indeed using code is to assume
that it has bugs. Be skeptical! If you read source code of Sage or its components
you’ll sometimes see things that will make you worry. This is a good thing, e.g.,
this occurs in a comment in the Sage code by Jonathan Bober for computing
the number of partitions of an integer (the number of partitions command):

// Extensive trial and error has found 3 to be the smallest
// value that doesn’t seem to produce any wrong answers.
// Thus, to be safe, we use 5 extra bits.

Note, by the way, that Bober’s code for computing the numer of partitions of an
integer is currently faster than anything else in the world, and it is not known
to have any bugs.

A healthy amount of skepticism and worry is a good to cultivate when doing
computational mathematics. Never listen to anybody who suggests you do

18

otherwise. These same sort of issues occur in closed source systems such as
Mathematica, but you don’t get to see them – that doesn’t make the chance of
bugs less likely. In fact, the Mathematica documentation says the following:

But just as long proofs will inevitably contain errors that go un-
detected for many years, so also a complex software system such
as Mathematica will contain errors that go undetected even after
millions of people have used it

There can even be bugs in the implementation of basic arithmetic, even at the
hardware level! [[reference the pentium hardware bug from the 1990s that was
found by a number theorist trying to debug his code]] So be skeptical when you
do computations. Always think about what mathematical computations tell
you, and try to find ways to double check results.

It almost goes without saying, but beautifully written, well-documented code
that has been around for a long time and used a great deal is generally much
less likely to be seriously buggy than newly written code. A great example of
such high quality – by aging – code is NTL (the Number Theory Library [[url]]).
Quality code that has been used for years, and thus likely has few bugs is like
gold – treat it that way; don’t just toss it out and assume that something new
that you sit down and write is likely to be better. That said, if you persist you
can and will write beautiful code that equals or surpasses anything ever done
before. When you do this, please consider contributing you code to the Sage
project.

There are several good reasons to write new code. One excellent reason is
that you simply want to understand an algorithm well, perhaps one you’re learn-
ing about in a course, a book, a paper, or that you just designed. Implementing
an algorithm correctly forces you to understand every detail, which can provide
new insight into the algorithm. If you’re implementing a nontrivial algorithm
that is described in a book or paper, the chances that it is wrong in some way
(e.g., a typo in a formula, a fundamental mistake in the algorithm, whatever)
is quite high – so you will definitely learn something, and possibly improve the
mathematical literature while you’re at it.

Another great reason to write new code is to implement an algorithm that
isn’t available in Sage. When you do this, make sure to be skeptical about the
correctness of your code; always test it extensively, document it, etc., just to
increase the chances it might always work correctly. And if there is any way
to independently verify correctness of the output of code, attempt to imple-
ment this too. If the algorithm is available in other mathematical software such
as Maple or Mathematica, and you have that program, use the interfaces de-
scribed in Section 1.6 to write code that automatically tests the output of your
implementation against the output of the implementation in that other system.
Include such test code in your final product.

19

1.4.1 Using Print Statements

Yes, you can use print statements for debugging your code. There is no shame
in this! Especially when using Python where you do not have to recompile every
time, this can be a particularly useful technique.

specific techniques for using print statements (how to figure out things)
use attach for .py or .sage files.

1.4.2 Debugging Python using pdb

Use command line and do %pdb

1.4.3 Debugging Cython using gdb

how to trace things through
bt is enough to get pretty far
multiple processes can be confusing

1.5 Source Control Management

1.5.1 Distributed versus Centralized

1.5.2 Mercurial

1.6 Using Mathematica, Matlab, Maple, etc.,
from Sage

A distinctive feature of Sage is that Sage supports using Maple, Mathematica,
Octave, Matlab, and many other programs from Sage, assuming you have the
relevant program (there are some caveats). This makes it much easier to combine
the functionality of these systems with each other and Sage.

Before discussing interfaces in more detail, we make a few operating system
dependent remarks.

what works on all os’s; in particular gap, singular, gp, maxima, always there.
what works on linux
on os x
on windows
—-
example of using gp to do something.
example of using mathematica
example of using maple
example of using matlab/octave
—-
eval versus call.
Discussion of what goes on behind the scenes. Files used for large inputs –

named pipes for small.

20

—-
Warning– multiple processes; complicated; can get parallel, which is harder

to think about...

21

Chapter 2

Algebraic Computing

Algebraic computing is concerned with computing with the algebraic objects of
mathematics such as arbitrary precision integer and rational numbers, groups,
rings, fields, vector spaces and matrices, and other object. The tools of algebraic
computing support research and education in pure mathematics, underly the
design of error correcting codes and cryptographical systems, and play a role in
scientific and statistical computing.

2.1 Groups, Rings and Fields

2.1.1 Groups

2.1.2 Rings

2.1.3 Fields

2.2 Number Theory

2.2.1 Prime numbers and integer factorization

2.2.2 Elliptic curves

2.2.3 Public-key cryptography: Diffie-Hellman, RSA, and
Elliptic curve

2.3 Linear Algebra

2.3.1 Matrix arithmetic and echelon form

Matrix multiplication using a numerical BLAS (in both mod p and over ZZ
cases)

22

2.3.2 Vector spaces and free modules

2.3.3 Solving linear systems

Applicatin: computing determinants over ZZ

2.4 Systems of polynomial equations

2.5 Graph Theory

2.5.1 Creating graphs and plotting them

2.5.2 Computing automorphisms and isomorphisms

2.5.3 The genus and other invariants

23

Chapter 3

Scientific Computing

Scientific computing is concerned with constructing mathematical models and
using numerical techniques to solve scientific, social, and engineering problems.

24

3.1 Floating Point Numbers

3.1.1 Machine precision floating point numbers

3.1.2 Arbitrary precision floating point numbers

3.2 Interval arithmetic

3.3 Root Finding and Optimization

3.3.1 Single variable: max, min, roots, rational root iso-
lation

3.3.2 Multivariable: local max, min, roots

3.4 NumericalSolution of Linear Systems

3.4.1 Solving linear systems using LU factorization

3.4.2 Solving linear systems iteratively

3.4.3 Eigenvalues and eigenvectors

3.5 Symbolic Calculus

3.5.1 Symbolic Differentiation and integration

3.5.2 Symbolic Limits and Taylor series

3.5.3 Numerical Integration

25

Chapter 4

Statistical Computing

4.1 Introduction to R and Scipy.stats

4.1.1 The R System for Statistical Computing

4.1.2 The Scipy.stats Python Library

4.2 Descriptive Statistics

4.2.1 Mean, standard deviation, etc.

4.3 Inferential Statistics

4.3.1 Simple Inference

4.3.2 Conditional Inference

4.4 Regression

4.4.1 Linear regression

4.4.2 Logistic regression

26

Bibliography

[ABC+] B. Allombert, K. Belabas, H. Cohen, X. Roblot, and I. Zakharevitch,
PARI/GP, http://pari.math.u-bordeaux.fr/.

[BCP97] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system.
I. The user language, J. Symbolic Comput. 24 (1997), no. 3–4, 235–
265, Computational algebra and number theory (London, 1993). MR
1 484 478

27

	Computing with Sage
	Installing and Using Sage
	Installing Sage
	The command line and the notebook
	Loading and saving variables and sessions

	Python: the Language of Sage
	Lists, Tuples, Strings, Dictionaries and Sets
	Control Flow, Errors and Exceptions
	Classes and Inheritence

	Cython: Compiled Python
	The Cython project
	How to use Cython: command line, notebook

	Debugging and Profiling
	Using Print Statements
	Debugging Python using pdb
	Debugging Cython using gdb

	Source Control Management
	Distributed versus Centralized
	Mercurial

	Using Mathematica, Matlab, Maple, etc., from Sage

	Algebraic Computing
	Groups, Rings and Fields
	Groups
	Rings
	Fields

	Number Theory
	Prime numbers and integer factorization
	Elliptic curves
	Public-key cryptography: Diffie-Hellman, RSA, and Elliptic curve

	Linear Algebra
	Matrix arithmetic and echelon form
	Vector spaces and free modules
	Solving linear systems

	Systems of polynomial equations
	Graph Theory
	Creating graphs and plotting them
	Computing automorphisms and isomorphisms
	The genus and other invariants

	Scientific Computing
	Floating Point Numbers
	Machine precision floating point numbers
	Arbitrary precision floating point numbers

	Interval arithmetic
	Root Finding and Optimization
	Single variable: max, min, roots, rational root isolation
	Multivariable: local max, min, roots

	NumericalSolution of Linear Systems
	Solving linear systems using LU factorization
	Solving linear systems iteratively
	Eigenvalues and eigenvectors

	Symbolic Calculus
	Symbolic Differentiation and integration
	Symbolic Limits and Taylor series
	Numerical Integration

	Statistical Computing
	Introduction to R and Scipy.stats
	The R System for Statistical Computing
	The Scipy.stats Python Library

	Descriptive Statistics
	Mean, standard deviation, etc.

	Inferential Statistics
	Simple Inference
	Conditional Inference

	Regression
	Linear regression
	Logistic regression

